首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Carbonic anhydrase (carbonate hydro-lyase, EC 4.2.1.1) has been purified from erythrocytes of hagfish (Myxine glutinosa). A single form with low specific CO2 hydration activity was isolated. The purified carbonic anhydrase appeared homogeneous judging from polyacrylamide gel electrophoresis and gel filtration experiments. The protein has a molecular weight of about 29 000, corresponding to about 260 amino acid residues. This molecular weight is in accordance with other vertebrate carbonic anhydrases with the exception of the elasmobranch enzymes, which have Mr 36 000--39 000. 2. The molecular weight obtained for hagfish carbonic anhydrase indicates that a carbonic anhydrase with Mr approx. 29 000 is the ancestral type of the vertebrate enzyme rather than, as in sharks, a heavier carbonic anhydrase molecule. 3. The circular dichroism spectrum may indicate a somewhat different structural arrangement of aromatic amino acid residues in this enzyme than in the mammalian carbonic anhydrases. 4. The enzyme is strongly inhibited by acetazolamide and also to a lesser extent by monovalent anions. 5. Zn2+, which is essential for activity, appears, contrary to other characterized carbonic anhydrases, less strongly bound in the active site of the enzyme.  相似文献   

2.
Prokaryotic carbonic anhydrases   总被引:2,自引:0,他引:2  
Carbonic anhydrases catalyze the reversible hydration of CO(2) [CO(2)+H(2)Oright harpoon over left harpoon HCO(3)(-)+H(+)]. Since the discovery of this zinc (Zn) metalloenzyme in erythrocytes over 65 years ago, carbonic anhydrase has not only been found in virtually all mammalian tissues but is also abundant in plants and green unicellular algae. The enzyme is important to many eukaryotic physiological processes such as respiration, CO(2) transport and photosynthesis. Although ubiquitous in highly evolved organisms from the Eukarya domain, the enzyme has received scant attention in prokaryotes from the Bacteria and Archaea domains and has been purified from only five species since it was first identified in Neisseria sicca in 1963. Recent work has shown that carbonic anhydrase is widespread in metabolically diverse species from both the Archaea and Bacteria domains indicating that the enzyme has a more extensive and fundamental role in prokaryotic biology than previously recognized. A remarkable feature of carbonic anhydrase is the existence of three distinct classes (designated alpha, beta and gamma) that have no significant sequence identity and were invented independently. Thus, the carbonic anhydrase classes are excellent examples of convergent evolution of catalytic function. Genes encoding enzymes from all three classes have been identified in the prokaryotes with the beta and gamma classes predominating. All of the mammalian isozymes (including the 10 human isozymes) belong to the alpha class; however, only nine alpha class carbonic anhydrase genes have thus far been found in the Bacteria domain and none in the Archaea domain. The beta class is comprised of enzymes from the chloroplasts of both monocotyledonous and dicotyledonous plants as well as enzymes from phylogenetically diverse species from the Archaea and Bacteria domains. The only gamma class carbonic anhydrase that has thus far been isolated and characterized is from the methanoarchaeon Methanosarcina thermophila. Interestingly, many prokaryotes contain carbonic anhydrase genes from more than one class; some even contain genes from all three known classes. In addition, some prokaryotes contain multiple genes encoding carbonic anhydrases from the same class. The presence of multiple carbonic anhydrase genes within a species underscores the importance of this enzyme in prokaryotic physiology; however, the role(s) of this enzyme is still largely unknown. Even though most of the information known about the function(s) of carbonic anhydrase primarily relates to its role in cyanobacterial CO(2) fixation, the prokaryotic enzyme has also been shown to function in cyanate degradation and the survival of intracellular pathogens within their host. Investigations into prokaryotic carbonic anhydrase have already led to the identification of a new class (gamma) and future research will undoubtedly reveal novel functions for carbonic anhydrase in prokaryotes.  相似文献   

3.
Apparent carbonic anhydrase activity in leaf extracts, measured as the rate of H+ production associated with the CO2 hydration reaction, varied by as much as 25-fold when the assay buffer was varied. Highest activities were usually recorded in barbitone buffer, with lower activities in imidazole, Tricine, Hepes, Tris, and phosphate buffers. The greatest differences were observed with the enzyme isolated from leaves of the monocotyledonous plants Zea mays (maize) and Triticum aestivum (wheat). Smaller differences were observed with carbonic anhydrase from dicotyledonous species and there was no effect on the erythrocyte enzyme. Leaf carbonic anhydrase activity measured by the mass spectrometric procedure was unaffected by varying the assay buffer. The low activity in certain buffers observed with the former assay system was found to be due to inhibition of the enzyme-catalyzed reaction by higher concentrations of CO2. Carbonic anhydrase from some sources was also strongly inhibited by certain inorganic and organic anions.  相似文献   

4.
Carbonic anhydrase is thought to be involved in the process of calcium carbonate deposition in calcified tissues of many organisms. Barnacles form hard calcified shells for protection against predation, and represent a class of marine-fouling animals. In order to inhibit barnacle growth by inhibiting shell formation, we searched for carbonic anhydrase inhibitors from microbial secondary metabolites. A simple assay for assessing carbonic-anhydrase-inhibiting activity was developed. Screening of many microorganisms isolated from soil with this assay resulted in a microbial strain that produced a carbonic anhydrase inhibitor. This strain was identified as Streptomyces eurocidicus mf294. The inhibitor was isolated through 4 purification steps and identified as 2-nitroimidazole on the basis of spectroscopic data. 2-Nitroimidazole inhibited barnacle carbonic anhydrase dose-dependently and complete inhibition was reached at the concentration of 1 x 10(-5) M. 2-Nitroimidazole did not affect settlement or metamorphosis of barnacle larvae, but inhibited shell formation at concentrations higher than 1 x 10(-4) M. These findings strongly support the idea that carbonic anhydrase is involved in calcification.  相似文献   

5.
Carbonic anhydrase activity was determined in spinach (Spinacia oleracea) leaf organelles isolated on sucrose density gradients and was found to be predominantly in the intact chloroplast fraction. The small amount of activity associated with the mitochondrial fractions was probably due to intact chloroplast contamination. No activity could be associated with the broken chloroplast or microbody fractions. Based upon inhibitor studies, carbonic anhydrase was found to be around 2 mm in the chloroplast. Ethoxzolamide, an inhibitor of carbonic anhydrase, reduced CO(2) fixation in intact chloroplasts. The concentration required to inhibit CO(2) fixation 20 to 40% was in excess of that required to inhibit the purified enzyme. The inhibition was partially reversed by CO(2). Ethoxzolamide had no effect on photosynthetic NADP reduction or photophosphorylation measured by methyl viologen reduction. The physiological role of carbonic anhydrase was shown not to be associated with CO(2) diffusion or CO(2) concentration. It is proposed that other functions of carbonic anhydrase could be the protection against denaturation by transient localized changes in pH or the hydration of compounds other than CO(2).  相似文献   

6.
The purification, immobilization, and characterization of carbonic anhydrase (CA) secreted by Bacillus subtilis VSG-4 isolated from tropical soil have been investigated in this work. Carbonic anhydrase was purified using ammonium sulfate precipitation, Sephadex-G-75 column chromatography, and DEAE-cellulose chromatography, achieving a 24.6-fold purification. The apparent molecular mass of purified CA obtained by SDS-PAGE was found to be 37 kD. The purified CA was entrapped within a chitosan-alginate polyelectrolyte complex (C-A PEC) hydrogel for potential use as an immobilized enzyme. The optimum pH and temperature for both free and immobilized enzymes were 8.2 and 37°C, respectively. The immobilized enzyme had a much higher storage stability than the free enzyme. Certain metal ions, namely, Co(2+), Cu(2+), and Fe(3+), increased the enzyme activity, whereas CA activity was inhibited by Pb(2+), Hg(2+), ethylenediamine tetraacetic acid (EDTA), 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB), and acetazolamide. Free and immobilized CAs were tested further for the targeted application of the carbonation reaction to convert CO(2) to CaCO(3). The maximum CO(2) sequestration potential was achieved with immobilized CA (480?mg CaCO(3)/mg protein). These properties suggest that immobilized VSG-4 carbonic anhydrase has the potential to be used for biomimetic CO(2) sequestration.  相似文献   

7.
Inhibition of CA V decreases glucose synthesis from pyruvate   总被引:1,自引:0,他引:1  
The carbonic anhydrase inhibitor acetazolamide reduces citrulline synthesis by intact guinea pig liver mitochondria and also inhibits mitochondrial carbonic anhydrase (CA V) and the more lipophilic carbonic anhydrase inhibitor ethoxzolamide reduces urea synthesis by intact guinea pig hepatocytes in parallel with its inhibition of total hepatocytic carbonic anhydrase activity. Intact hepatocytes from 48-h starved male guinea pig livers were incubated at 37 degrees C in Krebs-Henseleit with 95% O2/5% CO2 at pH 7.1 with 5 mM pyruvate, 5 mM lactate, 3 mM ornithine, 10 mM NH4Cl, 1 mM oleate; with these inclusions both urea and glucose synthesis start with HCO3- -requiring enzymes, carbamyl phosphate synthetase I and pyruvate carboxylase, respectively. Urea and glucose synthesis were inhibited in parallel by increasing concentrations of ethoxzolamide, estimated Ki for each approximately 0.1 mM. In other experiments hepatocytes were incubated at 37 degrees C in Krebs-Henseleit with 95% O2/5% CO2 at pH 7.1 with 10 mM glutamine, 1 mM oleate; with these inclusions glucose synthesis no longer starts with a HCO3- -requiring enzyme. Urea synthesis was inhibited by ethoxzolamide with an estimated Ki of 0.1 mM, but glucose synthesis was unaffected. Intact mitochondria were prepared from 48-h starved male guinea pig livers. Pyruvate carboxylase activity of intact mitochondria was determined in isotonic KCl-Hepes buffer, pH 7.4, 25 degrees C, with 7.5 mM pyruvate, 3 mM ATP, and 10 mM NaHCO3. Inclusion of ethoxzolamide resulted in reduction in the rate of pyruvate carboxylation in intact mitochondria, but not in disrupted mitochondria. It is concluded that carbonic anhydrase is functionally important for gluconeogenesis in the male guinea pig liver when there is a requirement for bicarbonate as substrate.  相似文献   

8.
Carbonic anhydrase activity was demonstrated in the chick-embryonic chorioallantoic membrane and was correlated with the Ca2+-transport activity of the membrane. It is inhibited by sulphonamides and is expressed in the chorioallantoic membrane in an age-dependent fashion during embryonic development. Ca2+ uptake by the chorioallantoic membrane in vivo also increases in a similar age-dependent manner. The temporal increase in these activities is coincident with calcium deposition in the embryonic skeleton. Incubation of the chorioallantoic membrane in ovo with sulphonamides specifically inhibits both the carbonic anhydrase and the Ca2+ uptake activities of the membrane in vivo. Enzyme histochemistry revealed the carbonic anhydrase activity is localized in the Ca2+-transporting ectodermal cells of the chorioallantoic membrane. These results, taken together, indicate that carbonic anhydrase may be functionally important in the Ca2+-transport activity of the chorioallantoic membrane.  相似文献   

9.
Regulation of chloroplastic carbonic anhydrase : effect of magnesium   总被引:2,自引:2,他引:0  
It was previously reported that magnesium ion inhibited carbonic anhydrase (Bamberger and Avron 1975 Plant Physiol 56: 481-485). Studies with partially purified carbonic anhydrase from spinach (Spinacia oleracea L.) chloroplasts show that the effect was the result of the chloride counterion and not the magnesium ion. Enzyme activity was reduced 50% upon addition of 3 to 10 millimolar MgCl2 or KCl while all additions of MgSO4 between 0.3 and 10 millimolar were mildly stimulatory.  相似文献   

10.
Unidirectional (36Cl) chloride fluxes across isolated and short-circuited frog skin were measured, with both sides bathed in low chloride solution. Transepithelial chloride influx was inhibited by exogenous cAMP as well as by substances enhancing its cellular concentration, such as epinephrine, isoproterenol, and 3-isobutyl-1-methylxanthine (IBMX). Epinephrine and isoproterenol addition resulted in an increase of transepithelial chloride outflux, but exogenous cAMP or IBMX had no significant effect on this unidirectional flux. Phenylephrine had no significant effect on influx or outflux. Carbonic anhydrase (CA) activity in extracts obtained from frog skin epithelium was inhibited by pretreatment with IBMX at 4-5 degrees C and prolonged exposure to cAMP at freezing point. cAMP or IBMX alone had no significant effects on CA activity. This catalytic activity was chloride insensitive and was abolished by 0.1 microM acetazolamide. Results suggest a Cl(-)-HCO3- exchange inhibition by cAMP via carbonic anhydrase inactivation. Chloride outflux stimulation by beta-adrenergic agonists does not seem to depend solely on an increase in cAMP concentration.  相似文献   

11.
Carbonic anhydrase purified from the saliva of the rat had kinetic properties identical with those of carbonic anhydrase II from rat red cells, but its molecular properties were distinctly different from the type II isozyme. Kinetic parameters were measured under steady state conditions by stopped-flow spectrophotometry and under equilibrium conditions by an 18O exchange method. The turnover number kcat for hydration of CO2 was 6.5 X 10(4) s-1 and the Michaelis constant was 4.2 mM at pH 7.5 and 25 degrees C, values which are equal to the steady state constants for red cell carbonic anhydrase II from the rat. Inhibition of the salivary isozyme by sulfanilamide (Ki = 3.7 microM) was nearly as efficient as inhibition of the erythrocyte isozyme II (Ki = 1.1 microM). The molecular weight for the salivary isozyme was 46,000 and the isoelectric point was 5.5. Salivary carbonic anhydrase had high mannose oligosaccharide components as measured by concanavalin A binding. The amino acid composition for the salivary isozyme was not similar to rat type II, but it was similar to that reported for membrane-bound carbonic anhydrase from bovine lung (Whitney, P.L., and Briggle, T.V. (1982) J. Biol. Chem. 257, 12056-12059). These observations suggest to us that salivary carbonic anhydrase is a secretory product.  相似文献   

12.
Rosmarinic acid (RA) is a natural polyphenol contained in many aromatic plants with promising biological activities. Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread and intensively studied metalloenzymes present in higher vertebrates. Acetylcholinesterase (AChE, E.C. 3.1.1.7) is intimately associated with the normal neurotransmission by catalysing the hydrolysis of acetylcholine to acetate and choline and acts in combination with butyrylcholinesterase (BChE) to remove acetylcholine from the synaptic cleft. Lactoperoxidase (LPO) is an enzyme involved in fighting pathogenic microorganisms, whereas glutathione S-transferases (GSTs) are dimeric proteins present both in prokaryotic and in eukaryotic organisms and involved in cellular detoxification mechanisms. In the present study, the inhibition effects of rosmarinic acid on tumour-associated carbonic anhydrase IX and XII isoenzymes, AChE, BChE, LPO and GST enzymes were evaluated. Rosmarinic acid inhibited these enzymes with Kis in the range between micromolar to picomolar. The best inhibitory effect of rosmarinic acid was observed against both AChE and BChE.  相似文献   

13.
碳酸酐酶(carbonic anhydrase,CA)催化可逆的水合反应CO2+H2O?ΗCO3?+H+,参与维持pH值平衡、CO2与离子的转运、细胞凋亡等生理过程。碳酸酐酶VI(CA-VI)作为该类含锌酶中惟一的细胞分泌型碳酸酐酶,在哺乳动物及人的唾液腺、乳腺、泪腺、支气管等腺体中表达,对维持口腔、上消化道和呼吸道的生理功能起重要作用。  相似文献   

14.
The analogues carbon dioxide (CO(2)), carbonyl sulfide (COS) and carbon disulfide (CS(2)) have been useful as substrate probes for enzyme activities. Here we explored the affinity of the enzyme carbonic anhydrase for its natural substrate CO(2), as well as COS and CS(2) (1) by in vitro kinetic metabolism studies using pure enzyme and (2) through mortality bioassay of insects exposed to toxic levels of each of the gases during carbonic anhydrase inhibition. Hydrolysis of COS to form hydrogen sulfide was catalysed rapidly showing parameters K(m) 1.86 mM and K(cat) 41 s(-1) at 25 degrees C; however, the specificity constant (K(cat)/K(m)) was 4000-fold lower than the reported value for carbonic anhydrase-catalysed hydration of CO(2). Carbonic anhydrase-mediated CS(2) metabolism was a further 65,000-fold lower than COS. Both results demonstrate the deactivating effect toward the enzyme of sulfur substitution for oxygen in the molecule. We also investigated the role of carbonic anhydrases in CO(2), COS and CS(2) toxicity using a specific inhibitor, acetazolamide, administered to Tribolium castaneum (Herbst) larvae via the diet. CO(2) toxicity was greatly enhanced by up to seven-fold in acetazolamide-treated larvae indicating that carbonic anhydrases are a key protective enzyme in elevated CO(2) concentrations. Conversely, mortality was reduced by up to 12-fold in acetazolamide-treated larvae exposed to COS due to reduced formation of toxic hydrogen sulfide. CS(2) toxicity was unaffected by acetazolamide. These results show that carbonic anhydrase has a key role in toxicity of the substrates CO(2) and COS but not CS(2), despite minor differences in chemical formulae.  相似文献   

15.
Cyanase catalyzes the reaction of cyanate with bicarbonate to give 2CO2. The cynS gene encoding cyanase, together with the cynT gene for carbonic anhydrase, is part of the cyn operon, the expression of which is induced in Escherichia coli by cyanate. The physiological role of carbonic anhydrase is to prevent depletion of cellular bicarbonate during cyanate decomposition due to loss of CO2 (M.B. Guilloton, A.F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P.M. Anderson, and J.A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). A delta cynT mutant strain was extremely sensitive to inhibition of growth by cyanate and did not catalyze decomposition of cyanate (even though an active cyanase was expressed) when grown at a low pCO2 (in air) but had a Cyn+ phenotype at a high pCO2. Here the expression of these two enzymes in this unusual system for cyanate degradation was characterized in more detail. Both enzymes were found to be located in the cytosol and to be present at approximately equal levels in the presence of cyanate. A delta cynT mutant strain could be complemented with high levels of expressed human carbonic anhydrase II; however, the mutant defect was not completely abolished, perhaps because the E. coli carbonic anhydrase is significantly less susceptible to inhibition by cyanate than mammalian carbonic anhydrases. The induced E. coli carbonic anhydrase appears to be particularly adapted to its function in cyanate degradation. Active cyanase remained in cells grown in the presence of either low or high pCO2 after the inducer cyanate was depleted; in contrast, carbonic anhydrase protein was degraded very rapidly (minutes) at a high pCO2 but much more slowly (hours) at a low pCO2. A physiological significance of these observations is suggested by the observation that expression of carbonic anhydrase at a high pCO2 decreased the growth rate.  相似文献   

16.
Because of the very high activity and abundance of human red cell carbonic anhydrase C (carbamate hydrolase, EC 4.2.1.1), it seemed likely that the second isozyme, B, might not be essential for CO2 metabolism. It was then found that physiological concentrations of Cl- inhibited catalysis of CO2 hydration by the B enzyme (but not by type C), suggesting further that type B does not function in vivo as a carbonic anhydrase. The versatility of the catalytic activity of carbonic anhydrase for a number of 'artificial' substrates suggested that enzyme B may be utilized in reactions of intermediary metabolism. A number of hydration, dehydration, decarboxylation, kinase, and phosphatase systems were tested to determine a possible physiological function for the enzyme. Results with eighteen possible substrates were negative and the possibility is discussed that mammalian carbonic anhydrase B is an evolutionary accident.  相似文献   

17.
Tu C  Rowlett RS  Tripp BC  Ferry JG  Silverman DN 《Biochemistry》2002,41(51):15429-15435
Catalysis of the dehydration of HCO(3)(-) by carbonic anhydrase requires proton transfer from solution to the zinc-bound hydroxide. Carbonic anhydrases in each of the alpha, beta, and gamma classes, examples of convergent evolution, appear to have a side chain extending into the active site cavity that acts as a proton shuttle to facilitate this proton transfer, with His 64 being the most prominent example in the alpha class. We have investigated chemical rescue of mutants in two of these classes in which a proton shuttle has been replaced with a residue that does not transfer protons: H216N carbonic anhydrase from Arabidopsis thaliana (beta class) and E84A carbonic anhydrase from the archeon Methanosarcina thermophila (gamma class). A series of structurally homologous imidazole and pyridine buffers were used as proton acceptors in the activation of CO(2) hydration at steady state and as proton donors of the exchange of (18)O between CO(2) and water at chemical equilibrium. Free energy plots of the rate constants for this intermolecular proton transfer as a function of the difference in pK(a) of donor and acceptor showed extensive curvature, indicating a small intrinsic kinetic barrier for the proton transfers. Application of Marcus rate theory allowed quantitative estimates of the intrinsic kinetic barrier which were near 0.3 kcal/mol with work functions in the range of 7-11 kcal/mol for mutants in the beta and gamma class, similar to results obtained for mutants of carbonic anhydrase in the alpha class. The low values of the intrinsic kinetic barrier for all three classes of carbonic anhydrase reflect proton transfer processes that are consistent with a model of very rapid proton transfer through a flexible matrix of hydrogen-bonded solvent structures sequestered within the active sites of the carbonic anhydrases.  相似文献   

18.
Carbonic anhydrase was identified in bone-resorbing cells present in sections of fetal rat femur embedded in glycolmethacrylate. Using a slight modification of the Hansson's histochemical method, we demonstrated that most chondroclasts (91.8-95.4%) and osteoclasts (95.1-96.3%) display a positive histochemical reaction for carbonic anhydrase. This staining was consistently inhibited in the presence of very low concentrations (10(-6), 10(-7) M) of the specific inhibitor acetazolamide. The number of chondroclasts reacting for carbonic anhydrase was identical to the number of acid phosphatase-stained chondroclasts determined on adjacent sections. A large majority of osteoclasts (96.3%) stained for carbonic anhydrase and for acid phosphatase (97.2%), with more osteoclasts reacting for the latter enzyme than the former (76.8 +/- 8.5 (SD) vs 85.3 +/- 9.2 cells/mm2 of endosteal bone; p less than 0.01). The observation that acetazolamide at a concentration as low as 10(-7) M inhibited Hansson's reaction, together with our histomorphometric results, validates the use of histochemical staining for carbonic anhydrase to evaluate activity of bone-resorbing cells identified in plastic-embedded fetal bone tissue.  相似文献   

19.
碳酸酐酶(carbonic anhydrase)作为一种活性中心含有锌离子的金属酶,能够可逆催化CO2生成碳酸氢盐的水合反应,该反应在生物体内承担着多样的生理学功能,具有高度的生物学意义。除广泛存在于真核生物以外,该酶在淡水、海水、嗜常温、嗜热、厌氧、好氧、致病、产酸、自养、异养等多种原核微生物中也有广泛的分布,并参与光合作用、呼吸作用和以CO2作为底物的反应,维持生理pH以及离子转运等生理过程。近年来,随着温室效应的日益加剧.生物固定CO2作为该酶的一种全新应用引起了研究者的广泛关注。回顾了碳酸酐酶作为催化剂参与CO2固定过程的历史、现状和最新发现,同时展望了未来应用的趋势。  相似文献   

20.
Sperm motility in flatfishes shows unique characteristics. The flagellar movement either in vivo or in permeabilized models is arrested by the presence of 25-100 mM HCO3-, or by gentle perfusion with CO2 gas. To understand the molecular basis of this property, sperm Triton-soluble proteins and flagellar proteins from several species were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. An abundant 29-kDa protein was observed only in flatfish species. Partial amino acid sequences identified this protein as a carbonic anhydrase, an enzyme involved in the interconversion of CO2 and HCO3-. 6-ethoxyzolamide, a specific inhibitor of carbonic anhydrase inhibits sperm motility, especially at low pH. In the case of HCO3(-)-arrested sperm, the motility is restored by addition of 6-ethoxyzolamide. Taken together, these results suggest that a novel pH/HCO3(-)-dependent regulatory mechanism mediated by carbonic anhydrase is involved in the motility control in flatfish sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号