首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentrations of heavy metals in rice grains and soils from Ada cultivated fields were investigated. Rice and soil samples were digested and the heavy metal concentrations determined using atomic absorption spectrophotometer. The results showed the following concentrations of metals (mg/kg): soil—Pb (4.64 ± 2.18), Cd (0.83 ± 0.83), Zn (20.26 ± 18.60), Mn (68.90 ± 19.91), Ni (3.46 ± 2.42), and Cr (21.41 ± 14.6); rice—Pb (3.99 ± 1.43), Cd (1.10 ± 0.53), Zn (65.37 ± 58.09), Mn (37.81 ± 5.82), Ni (3.12 ± 1.49), and Cr (10.87 ± 6.47). The Canadian, Nigerian and Chinese maximum allowable concentration for cadmium in soil were exceeded by 15%, 30%, and 85% of the soil samples, respectively. Heavy metals in all the rice samples evaluated were found to be above the World Health Organization (WHO) maximum permissible limit for lead, cadmium, and chromium. Strong positive and significant correlations were observed between some metal pairs in soil and rice indicating the similarity in origin. The estimated daily intakes of Pb and Cd from rice grown on the fields were higher than the safety levels established by WHO and the Joint FAO/WHO Expert Committee Food Additive, respectively. Hazard quotients and total hazard index for Pb and Cd were greater than 1. This indicates that consumption of rice from these fields will likely induce adverse health effects arising largely from Pb and Cd exposure.  相似文献   

2.
A total of 455 agricultural soil samples from four nonferrous mines/smelting sites in Shaoguan City, China, were investigated for concentrations of 10 heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn). The mean concentrations of the metals were 72.4, 5.16, 13.3, 54.8, 84.5, 1.52, 425, 28.2, 529, and 722 mg kg?1, respectively. The values for As, Cd, Hg, Pb, and Zn were more than 8 and 1.5 times higher than their background values in this region and the limit values of Grade II soil quality standard in China, respectively. Estimated ecological risks based on contamination factors and potential ecological risk factors were also high or very high for As, Cd, Hg, and Pb. Multivariate analysis (Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) strongly implied three distinct groups; i.e., As/Cu/Hg/Zn, Co/Cr/Mn/Ni, and Cd/Pb. Local anomalies for As, Cu, Hg, and Zn by a probably anthropogenic source (identified as mining activity), Co, Cr, Mn, and Ni by natural contribution, and a mixed source for Cd and Pb, were identified. This is one of the few studies with a focus on potential sources of heavy metals in agricultural topsoil around mining/smelting sites, providing evidence for establishing priorities in the reduction of ecological risks posed by heavy metals in Southern China and elsewhere.  相似文献   

3.
Metal contamination in sediment of the Mianyuan River (one of the major upper reaches of the Yangtze River) in Longmenshan Region (China) was investigated in 2012. Means of metal concentrations in sediment (<74μm) were Cr: 59.93 ± 19.8% mg/kg; As: 7.21 ± 50.2% mg/kg; Se: 0.45 ± 66.3% mg/kg; Pb: 19.89 ± 29.3% mg/kg; Zn: 78.98 ± 31.9% mg/kg; Cd: 0.69 ± 28.3% mg/kg; Ba: 0.71 ± 34.0% g/kg; Mn: 0.55 ± 62.2% g/kg. This study suggested: (1) concentrations of Cd, As, Cr, and Pb in Mianyuan River sediment were lower than those of the middle and lower reaches of the Yangtze River; (2) the increase of metals during the period from 2006 to 2009 was probably related to the destruction of tailings piles by the Wen Chun earthquake in 2008; (3) organic materials decided the distribution of Cd, Se, As, Ba, and Mn in the upstream sediment, while the iron and manganese minerals controlled the distribution of Ba, Cr, and Zn in the downstream sediment; (4) sources of Cd, Se, and As were geogenic, while sources of Cr, Zn, Ba, and Mn were anthropogenic; (5) the source of Pb in the upstream sediment was probably automobile exhaust, but that of Pb in the downstream sediment was geogenic.  相似文献   

4.
Manganese mining activities in the Drama district, northern Greece, have resulted in a legacy of abandoned mine wastes at the “25 km Mn-mine” site. Current research was focused on the western Drama plain (WDP), constituting the recipient of the effluents from Xiropotamos stream, which passes through the “25 km Mn-mine” place. A total of 148 top soil samples were collected and their heavy metals (HMs) concentrations (Mn, Pb, Zn, Cu, Cd, and As) were determined using inductively coupled plasma mass spectrometry. Enrichment factor (EF), geoaccumulation index (Igeo), and pollution load index (PLI) were calculated as an effort to assess metal accumulation, distribution, and pollution status of the soils due to the former mining activity. The overall potential ecological risk of HMs to the environment was also evaluated using the potential toxicity response index (RI). Results showed that peak values of the elements (13 wt% for Mn, 0.2 wt% for Pb, 0.2 wt% for Zn, 0.1 wt% for As, 153 mg/kg for Cu, and 27.5 mg/kg for Cd) were found in soils from sites close to and along both sides of the Xiropotamos stream. In this sector of WDP, values of EF, Igeo, and PLI classify the soils as moderately to highly polluted with Mn, Pb, Zn, Cd, and As. Based on RI values, soils in this part of WDP display considerable to very great potential ecological risk and, therefore, a remediation has to be applied. The main cause of soil contamination is considered the Xiropotamos downstream transfer and dispersion of Mn mine wastes via flooding episodes.  相似文献   

5.
In this study, the content characteristics, comprehensive pollution assessment, and morphological distribution characteristics of heavy metals (Mn, Cd, Cr, Pb, Ni, Zn, and Cu) were researched based on the processes of field investigation, sample collection, and experimental analysis. Results showed that the mean concentrations of Mn, Pb, Cr, Cu, Cd, Zn, and Ni in surface soils were 522.77, 22.56, 55.10, 25.41, 0.25, 57.02, and 48.47 mg kg?1, respectively. The surface soil from Sunan mining area was contaminated by Cu, Cd, and Ni in different degrees, and high CV values of Cd, Zn, Pb, and Ni were influenced by local human activities possibly. The evaluation results suggested that the mean Igeo values were in the sequence of Cd (0.657) > Ni (0.052) > Cu (?0.293) > Mn (?0.626) > Zn (?0.761) > Cr (?0.884) > Pb (?0.899). Besides, Cd was the most significant potential risk factor among all elements. Nevertheless, the Cd of bioavailable speciations with higher proportion had stronger migration and toxicity, and was more easier to be absorbed and enriched than other elements by some crops (e.g., vegetables, rice), and being at a relatively higher potential ecological risk in soil.  相似文献   

6.
There have been few investigations of trace elements in the urine and hair of populations exposed to high levels of arsenic (As) in drinking water. Therefore, concentrations of selected metals in urine and hair samples from a population in a study area where arsenism was endemic and a control area were determined. It was found that the median concentrations of barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), zinc (Zn), and As in the urine samples from the population in the study area were 3.87, 0.47, 0.50, 61.84, 26.82, 1.33, 128.45, 7.05, 1.10, 233.75, and 339.63 μg/L, respectively. The corresponding values in the urine samples from a population in the control area were 29.08, 0.19, 0.21, 27.77, 10.32, 4.61, 14.01, 2.19, 3.90, 113.92, and 20.28 μg/L, respectively. In the study area, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn excreted in the urine were likely to be mainly derived from drinking water with high levels of arsenic. The median concentrations of Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Zn, and As in the hair samples from the study area were 4.16, 0.03, 0.09, 1.09, 6.54, 1.97, 0.06, 0.53, 1.64, 144.28, and 1.67 mg/kg, respectively. The corresponding values from the control area were 4.76, 0.03, 0.02, 1.41, 8.31, 1.34, 0.07, 0.39, 0.86, 154.58, and 0.29 mg/kg, respectively. Significant positive correlations were observed between As and Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn in the urine in the study area. However, As was not positively associated with these metals in the hair samples. Exposure to high levels of As in drinking water increased the accumulation of Ba and Mn in the hair and the excretion of Cd, Cu, and Mo in the urine in the study area. The population in the study area might experience Cu and Mo deficiencies for an increasing excretion of Cu and Mo.  相似文献   

7.
Phytoremediation of contaminated calcareous desert land in the United Arab Emirates has been investigated. Soils from 12 northern UAE sites, suspected of metal contamination, were acid-extracted and analyzed by ICP-OES for Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. Twenty-two plants naturally growing at contaminated sites were sampled and analyzed for their uptake of Co, Cr, Cu, Mn, Ni, Pb, and Zn and eight commercially available plants, grown under controlled conditions, were also studied for their phytoextraction capabilities. The concentration of available Cr was found to be 1300 ± 150 mg/kg in the soil of the Ajman Industrial Zone and 80 ± 10 mg/kg of Pb was found at Bithna. Among the plants investigated, Portulaca oleracea and Iresine herbstii showed potential for Cr(VI) and Pb(II) accumulation, respectively, with bioconcentration factors (BCF) greater than unity. Atriplex halimus accumulated Co(II), Cr(III), and Cu(II) each with a BCF > 1.  相似文献   

8.
We determined the concentrations of Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn in dietary supplements of marine origin. Four supplement categories were studied; algae, coral, krill, and shark cartilage. A direct mercury analyzer was used for Hg determinations while acid digestions and ICP-AES were used for Cr analysis and ICP-MS for the other trace metals. Algae are the supplements showing the highest concentrations of Pb, Cr, and Ni with respective means of 1.6 mg Pb/kg dry weight (d.w.), 3.2 Cr mg/kg d.w., and 8.0 mg Ni/kg d.w. Krill supplements have the highest levels of Cd, Cu, and Zn with 0.65 mg Cd/kg d.w., 63 mg Cu/kg d.w., and 50 mg Zn/kg d.w., respectively. Shark cartilage supplements show the highest levels of Hg and Co with mean concentrations of 160 μg Hg/kg d.w. and 73 ± 51 μg Co/kg d.w., respectively. No samples in our study exceeded the provisional tolerable daily intakes set by Health Canada, the joint committee of the World Health Organization/Food and Agricultural Organization, or the U.S. Environmental Protection Agency. Nevertheless, Ni and Pb in algae and Hg in shark cartilage may end up contributing to a very significant portion of the allowable daily intake—leaving little room for normal intake through food consumption and other exposure pathways.  相似文献   

9.
Three naturally growing plants Ipomoea carnea, Lantana camara, and Solanum surattense were found in fly ash dumpsite of Patratu thermal power station, Jharkhand, India. They were assessed for their metal uptake potential. The fly ash was slightly alkaline with very less nitrogen and organic carbon but enriched with phosphorus and heavy metals. Lantana camara and Ipomoea carnea showed good translocation from root to shoot for most of the metals except Mn and Pb. The order of metal accumulation in stem of both the plants were Fe(205mg/kg)>Mn(65mg/kg)>Cu(22.35mg/kg)>Pb(6.6mg/kg)>Cr(3.05mg/kg)>Ni(1 mg/kg)>Cd(0.5 mg/kg) and Fe(741 mg/kg)>Mn(154.05 mg/kg)>Cu(20.75 mg/kg)>Pb(6.75 mg/kg)>Ni(4.0 mg/kg)>Cr(3.3mg/kg)>Cd(0.05mg/kg), respectively. But Solanum surattense accumulated most of the metals in roots. The order was in the following order, Mn (382.2mg/kg) >Fe (264.1mg/kg) > Cu (25.35mg/kg) >Pb (5.95 mg/kg) > Ni (1.9 mg/kg) > Cr (1.8mg/kg) > Cd (0.55 mg/kg). The order of Bioconcentration factor (BCF) in root and shoot followed almost the same order as, Mn>Fe>Ni>Pb>Cu>Cr≈ Cd in all the three species. ANOVA showed significant variation in metal accumulation by root and stem between the species. Finally, it can be concluded that Solanum surattense can be used as phytostabilizer and other two species as phytoextractor of metal for fly ash dumpsite reclamation.  相似文献   

10.
Concentrations of trace metals (Cu, Pb, Zn, Cd, Cr, Hg, and As) were determined for the first time in seawater, sediment, and Manila clam from Deer Island, Liaoning Province, China. The seawater, sediment, and clam samples were collected seasonally at three clam farming sites around Deer Island during 2010–2011. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the seawater samples were 4.16, 0.72, 5.88, 0.45, 2.51, 0.03, and 1.02 μg/l, respectively. The seasonal variations of trace metals in seawater showed a significant difference in the concentrations of Cu, Pb, Zn, Hg, and As among seasons. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the sediment samples were 6.43, 13.80, 53.08, 1.10, 36.40, 0.05, and 4.78 mg/kg dry weight, respectively. Trace metal concentrations in sediment seasonally varied significantly except for Cd and Hg. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the clam samples were 11.28, 0.61, 92.50, 0.58, 3.98, 0.03, and 1.98 mg/kg dry weight, respectively. Concentrations of Cu, Zn, Cd, Cr, and As in Manila clam showed marked seasonal fluctuations with significant difference. Cu and Zn were the metals with the highest mean biosediment accumulation factor values in Manila clam. Besides, significant correlations for the concentrations of Cu and Zn relative to their concentrations in sediment were also found. Such differences in regression analyzes may be explained by differential bioaccumulation of essential and xenobiotic metals. Concentrations of trace metals in Manila clam did not exceed the maximum established regulatory concentrations for human consumption. Moreover, the calculations revealed that the estimated daily intake values for the examined clam samples were below the internationally accepted dietary guidelines and the calculated hazard quotient values were well less than 1, thus strongly indicating that health risk associated with the intake studied metals through the consumption of Manila clam from Deer Island was absent.  相似文献   

11.
目的:通过测定延龄草中微量元素的含量,发挥延龄草的药用和食用价值.方法:采用干法灰化处理样品,用石墨炉原子吸收光谱法测定延龄草中微量元素的含量.结果:延龄草中9种微量元素含量分别是:Zn 20.00 mg/kg,Fe 95.5 mg/kg,Cu 7.5 mg/kg,Mn 11.75 mg/kg,Cd 0.02 mg/kg,Cr 0.0955 mg/kg,Co 0.0075 mg/kg,Pb 0.01175 mg/kg,Ni 0.07275mg/kg.结论:延龄草中人体必需的微量元素Zn、Fe、Mn的含量较高,有害元素Pb、Cd等的含量很低.  相似文献   

12.
Accumulation of different metals and metalloids was assessed in two vegetables radish (Raphanus sativus L.) and spinach (Spinacea oleracea L.) irrigated with domestic wastewater in the peri-urban areas of Khushab City, Pakistan. In general, the metal and metalloid concentrations in radish and spinach were higher at site-II treated with sewage water than those found at site-I treated with canal water. In case of radish at both sites the levels of metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, and Pb) were below the permissible level except those of Mn, Ni, Mo, Cd, and Pb. At both sites, the transfer factor ranged from 0.047–228.3 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: As > Fe > Ni > Zn > Cd > Mo > Se > Co > Pb > Mn > Cr > Cu, respectively. While in case of spinach at both sites, the concentrations of metals and metalloids in vegetable samples irrigated with canal and sewage water were observed below the permissible level except Mn, Ni, Zn, Mo, and Pb. At both sites, the transfer factor ranged from 0.038–245.4 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: Cd > Ni > Co > Se > Mn > Zn > Mo > Pb > Fe > Cr > As > Cu, respectively.  相似文献   

13.
This study was conducted to investigate heavy metal contamination in agricultural soils and their transfer in a soil-potato system. A total of 59 pairs of potato and soil samples, representing different locations were collected from Hamedan, western Iran and subjected to heavy metals analysis. Average concentrations of Cd, Cu, Fe, Mn, Ni, Pb, and Zn were 1.2, 13.1, 161.4, 13.2, 3.2, 19.5, and 41.5 mg kg?1 dry weight in potato tubers, respectively. A sequence of decreasing plant transfer factors values: Cd > Pb > Cu > Zn > Ni ≥ Mn > Fe was obtained. Furthermore, the health risk index (HRI) values were within the safe limit (<1) except for Cd and Pb. HRI values for Cd and Pb were higher than 1, indicating potential health risk, especially for children. The results indicated that daily intakes of Cd and Pb in potato in the study area may present a future hazard.  相似文献   

14.
Mining activities produce waste tailings that can be a significant source of pollution in the surrounding ecosystem. This study was designed to estimate the magnitude of Fe, As, Pb, Cd, Mn, Ni, Zn, and Cr in soil impacted by activities in the Moeil iron ore mine area of northwestern Iran and initially assess the potential risk to nearby residents and ecological habitats. For this, concentrations of elements in 24 samples from 8 locations were analyzed by inductivity coupled plasma optical emission spectrometry. Concentrations of heavy metals reported for samples collected from the area ranged from 50,247–466,200 mg/kg for Fe, 40–10,827 mg/kg for As, 9–84 mg/kg for Pb, 0.2–58.4 mg/kg for Cd, 32–424 mg/kg for Mn, 4–32 mg/kg for Ni, 37–60 mg/kg for Zn, and 32–337 mg/kg for Cr. Reported levels of Fe and As in particular are indicative of severe contamination and imply a high risk to ecological receptors. Reported levels of arsenic also imply elevated cancer and non-cancer health risks to residents who work in or pass through the area. Reported levels of Cd and Cr in soil samples also indicate an elevated cancer risk posed by these metals. The result of this study indicates it is important to estimate potential contamination of soils and drinking water wills in the vicinity of Moeil village to arsenic and heavy metals.  相似文献   

15.
The Pb, Cd, Cu, Zn, and Mn contents of the liver, spleen, muscle, bones, scales, gills, and the whole body of 3- to 7-year-old notothenioid Antarctic cod (Notothenia coriiceps, Richardson, 1844) were measured. The highest heavy metal concentrations obtained are as follows: Cd in liver, the mean value was 1.36 ± 0.19 mg/kg dry weight (wt); Pb and Zn in spleen, the mean values were 3.33 ± 0.86 and 143.97 ± 16.17 mg/kg dry wt, respectively; Cu in gills, 3.76 ± 1.16 mg/kg dry wt; and Mn in scales, 14.80 ± 4.77 mg/kg dry wt. The comparison with the data reported up to now shows that the metal concentrations varied within relative wide ranges. These first data obtained could be used as a baseline to investigate further relationships among metal contents in fish, their diet, and habitat.  相似文献   

16.
In this study, paddy soil and rice grain samples were collected from the vicinity around the Xinqiao mine in Tongling, China to test for the presence of heavy metals (Cd, Ni, Cr, Cu, Zn, and Pb) in soil-rice system. Results indicated that the soil samples were primarily contaminated with Cd and Cu and followed with Zn and Pb. In rice grains, Cd, Cu, and Cr concentrations exceeded recommended guidelines. However, the regional distribution of heavy metals in rice grains and soil was inconsistent. The bioaccumulation factor of heavy metals in rice grains decreased in the order of Cd > Zn > Cu > Ni > Cr > Pb. The BAF was significantly positively correlated with TCLP-extractable metals and significantly negatively correlated with soil pH. However, the relationship between soil organic matter and the BAF in rice grains was complex. Health risk assessment through rice intake showed that hazard quotients of Cu and Cd were greater than 1 and could pose a considerable non-cancer health risk to adults and children; meanwhile, Cr, Ni, and Cd could pose an unacceptable cancer risk. The results indicated that the government must take measures to reduce heavy metal contents in paddy soil and rice.  相似文献   

17.
Due to rapid industrialization and urbanization during the last two decades, contamination of urban agricultural soils by heavy metals is on an increase all over China. In this study, fifty soil samples were collected from urban vegetable fields in a chemical industrial area and non chemical industrial area in Jilin City to investigate the heavy metal pollution level. The mean Pb, Cr, Cu, Ni, Zn, and Cd contents (30.84, 65.65, 26.41, 23.07, 135.14, and 0.1434 mg kg?1 dry weight, respectively) in the urban vegetable soils were higher than their corresponding natural background values. The principal component analysis (PCA) was performed to identify the possible sources of metal contamination in the study area. The results indicated that Cu and Zn were mainly from industrial activities, while Pb and Cd were derived from traffic activities and agricultural activities, and Cr and Ni tended to be from parent material. The distribution of comprehensive pollution index values showed that Pb, Cr, Cu, Ni, Zn, and Cd concentrations in most of the agricultural fields did not exceed the baseline values affecting the safety of agricultural production and human health according to the soil environmental quality standard of China, indicating an insignificant contamination of these metals in Jilin City.  相似文献   

18.
This research aims at quantifying the concentrations of heavy metals within the home environment in Amman, the capital city of Jordan, and to compare the total concentrations of indoor dusts to that of exterior dusts and soils. Housedust samples were collected from different zones of Amman. Street dust samples and garden soil samples were collected in the immediate vicinity within 10–50 m of each residence. The geometric mean concentrations of metals in the household dust were Pb, 169 mg/kg; Cd, 2.92 mg/kg; Zn, 1985 mg/kg; Cu, 133 mg/kg; Cr, 66 mg/kg; Co, 21 mg/kg; Ni, 31 mg/kg; Mn, 284 mg/kg; Be, 3.0 mg/kg; Ba, 43 mg/kg; B, 697 mg/kg and Al, 1441 mg/kg. Comparisons of household dust, garden soil and street dust were based on the same particle size fraction. Results showed housedust samples to contain higher concentrations for Pb, Zn, Cr, Ni, Cd, Cu and B, than either street dust or garden soil samples. However, the differences between Pb and Cr levels in the three different sample categories were insignificant. Enrichment factor calculations and the enrichment factor ratios indicated that patterns of enrichment of indoor dust differ from that of exterior dusts.  相似文献   

19.
To assess the potential health risks associated with selected trace elements due to consumption of bivalves, a screening-level risk assessment was conducted through consideration of internationally accepted dietary guidelines and the calculation of hazard quotients. Seventeen edible bivalve species were collected from a local market in Dalian City, China. The ranges obtained for the trace elements analyzed in mg/kg dry weight were as follows: Cu (1.8–133), Zn (56–693), Mn (5.7–150), Se (0.2–3.8), Ni (0.56–7.67), Cd (0.04–10.3), Cr (0.48–2.23), Pb (0.01–1.63), Hg (0.07–0.35), and As (0.22–4.00). The estimated daily intake (EDI) of bivalves was 15.0–255.1 times lower than the RfD guidelines for all the trace elements studied. Further, the calculated hazard quotients (HQs) of the trace elements analyzed were well less than 1. Therefore, there were no potential human health risks to Dalian City consumers of marine bivalves.  相似文献   

20.
Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and Zinc (Zn) in surface soils (0-20cm) of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (p<0.05) between all of the metals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1), which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2). Based on the calculated Nemerow pollution index, percentage for slightly polluted (1<P ≤ 2) surface soils were reached 57.33%, while 42.65% topsoil samples are moderate polluted (2<P≤ 3). According to the results above-mentioned, different soil environmental function areas were classified and proper soil environmental management policy was proposed to decrease the environmental risks in the process of industrial city transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号