首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protease producing Streptomyces sp. A6 was isolated from intertidal zone of the coast of Diu (Gujarat, India). Plackett–Burman method was applied to identify important factors (shrimp waste, FeCl3, ZnSO4 and pH) influencing protease production by Streptomyces sp. A6. Further optimization was done by response surface methodology using central composite design. The concentrations of medium components for higher protease production as optimized using the above approach were (g l?1): Shrimp waste, 14; FeCl3, 0.035; ZnSO4, 0.065 and pH, 8.0. This statistical optimization approach led to production of 129.02 ± 2.03 U ml?1 of protease which was 4.96 fold higher compared to that obtained using the unoptimized medium. The protease production was scaled to 3 l in a 5-l bench fermenter using optimized medium which further increased the production by 63.4%. Deproteinization and chitin recovery obtained at the end of fermentation was 85.12 ± 4.7 and 70.58 ± 1.33%, respectively. The present study is the first report on statistical optimization of medium components for production of protease by Streptomyces species using cheaper raw material such as shrimp waste. The study also explored the possibility Streptomyces sp. A6 for reclamation of shrimp wastes.  相似文献   

2.
In the present study, cultivation conditions and medium components were optimized using statistical design and analysis to enhance the production of Chi21702, a cold-active extracellular chitinase from the Antarctic bacterium Sanguibacter antarcticus KOPRI 21702. Identification of significant carbon sources and other key elements was performed using a statistical design technique. Chitin and glycerol were selected as main carbon sources, and the ratio of complex nitrogen sources to carbon sources was determined to be 0.5. Among 15 mineral components included in basal medium, NaCl, Fe(C6H5O7), and MgCl2 were found to have the most influence on Chi21702 production. The optimal parameters of temperature, initial pH, and dissolved oxygen level were found to be 25°C, 6.5, and above 30% of air saturation, respectively. The maximum Chi21702 activity obtained under the optimized conditions was 90 U/L. Through statistical optimization methods, a 7.5-fold increase in Chi21702 production was achieved over unoptimized conditions. Chi21702 showed relatively high activity, even at low temperatures close to 0°C. The information obtained in the present study could be applied to the production of cold-active endochitinase on a large scale, suitable for a process at low temperature in industry.  相似文献   

3.
In the present investigation Thalassospira frigidphilosprofundus, a novel species from the deep waters of the Bay of Bengal, was explored for the production of cold-active β-galactosidase by submerged fermentation using marine broth medium as the basal medium. Effects of various medium constituents, namely, carbon, nitrogen source, pH, and temperature, were investigated using a conventional one-factor-at-a-time method. It was found that lactose, yeast extract, and bactopeptones are the most influential components for β-galactosidase production. Under optimal conditions, the production of β-galactosidase was found to be 3,864 U/mL at 20 ± 2°C, pH 6.5 ± 0.2, after 48 hr of incubation. β-Galactosidase production was further optimized by the Taguchi orthogonal array design of experiments and the central composite rotatable design (CCRD) of response surface methodology. Under optimal experimental conditions the cold-active β-galactosidase enzyme production from Thalassospira frigidphilosprofundus was enhanced from 3,864 U/mL to 10,657 U/mL, which is almost three times higher than the cold-active β-galactosidase production from the well-reported psychrophile Pseudoalteromonas haloplanktis.  相似文献   

4.
Lactococcus lactis subsp lactis BSA (L. lactis BSA) was isolated from a commercial fermented product (BSA Food Ingredients, Montreal, Canada) containing mixed bacteria that are used as starter for food fermentation. In order to increase the bacteriocin production by L. lactis BSA, different fermentation conditions were conducted. They included different volumetric combinations of two culture media (the Man, Rogosa and Sharpe (MRS) broth and skim milk), agitation level (0 and 100 rpm) and concentration of commercial nisin (0, 0.15, and 0.30 µg/ml) added into culture media as stimulant agent for nisin production. During fermentation, samples were collected and used for antibacterial evaluation against Lactobacillus sakei using agar diffusion assay. Results showed that medium containing 50 % MRS broth and 50 % skim milk gave better antibacterial activity as compared to other medium formulations. Agitation (100 rpm) did not improve nisin production by L. lactis BSA. Adding 0.15 µg/ml of nisin into the medium-containing 50 % MRS broth and 50 % skim milk caused the highest nisin activity of 18,820 AU/ml as compared to other medium formulations. This activity was 4 and ~3 times higher than medium containing 100 % MRS broth without added nisin (~4700 AU/ml) and 100 % MRS broth with 0.15 µg/ml of added nisin (~6650 AU/ml), respectively.  相似文献   

5.
An optimized cultivation condition is needed to maximize the functional green fluorescent protein (GFP) production. Six process variables (agitation rate, temperature, initial medium pH, concentration of inducer, time of induction, and inoculum density) were screened using the fractional factorial design. Three variables (agitation rate, temperature, and time of induction) exerted significant effects on functional GFP production in E. coli shake flask cultivation and were optimized subsequently using the Box–Behnken design. An agitation rate of 206 rpm at 31°C and induction of the protein expression when the cell density (OD600nm) reaches 1.04 could enhance the yield of functional GFP production from 0.025 g/L to 0.241 g/L, which is about ninefold higher than the unoptimized conditions. Unoptimized cultivation conditions resulted in protein aggregation and hence reduced the quantity of functional GFP. The model and regression equation based on the shake flask cultivation could be applied to a 2-L bioreactor for maximum functional GFP production.  相似文献   

6.
An extremely halophilic Chromohalobacter sp. TVSP101 was isolated from solar salterns and screened for the production of extracellular halothermophilic protease. Identification of the bacterium was done based upon biochemical tests and the 16S rRNA sequence. The partially purified enzyme displayed maximum activity at pH 8 and required 4.5 M of NaCl for optimum proteolytic activity. In addition, this enzyme was thermophilic and active in broad range of temperature 60–80°C with 80°C as optimum. The Chromohalobacter sp. required 4 M NaCl for its optimum growth and protease secretion and no growth was observed below 1 M of NaCl. The initial pH of the medium for growth and enzyme production was in the range 7.0–8.0 with optimum at pH 7.2. Various cations at 1 mM concentration in the growth medium had no significant effect in enhancing the growth and enzyme production but 0.5 M MgCl2 concentration enhanced enzyme production. Casein or skim milk powder 1% (w/v) along with 1% peptone proved to be the best nitrogen sources for maximum biomass and enzyme production. The carbon sources glucose and glycerol repressed the protease secretion. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of halophilic protease.  相似文献   

7.
In this study, culture conditions were optimized to improve lovastatin production by Omphalotus olearius, isolate OBCC 2002, using statistical experimental designs. The Plackett–Burman design was used to select important variables affecting lovastatin production. Accordingly, glucose, peptone, and agitation speed were determined as the variables that have influence on lovastatin production. In a further experiment, these variables were optimized with a Box–Behnken design and applied in a submerged process; this resulted in 12.51 mg/L lovastatin production on a medium containing glucose (10 g/L), peptone (5 g/L), thiamine (1 mg/L), and NaCl (0.4 g/L) under static conditions. This level of lovastatin production is eight times higher than that produced under unoptimized media and growth conditions by Omphalotus olearius. To the best of our knowledge, this is the first attempt to optimize submerged fermentation process for lovastatin production by Omphalotus olearius.  相似文献   

8.
In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg2+ were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.  相似文献   

9.
Methylobacillus sp. zju323 was adopted to improve the biosynthesis of pyrroloquinoline quinone (PQQ) by systematic optimization of the fermentation medium. The Plackett–Burman design was implemented to screen for the key medium components for the PQQ production. CoCl2?·?6H2O, ρ-amino benzoic acid, and MgSO4?·?7H2O were found capable of enhancing the PQQ production most significantly. A five-level three-factor central composite design was used to investigate the direct and interactive effects of these variables. Both response surface methodology (RSM) and artificial neural network–genetic algorithm (ANN–GA) were used to predict the PQQ production and to optimize the medium composition. The results showed that the medium optimized by ANN–GA was better than that by RSM in maximizing PQQ production and the experimental PQQ concentration in the ANN–GA-optimized medium was improved by 44.3% compared with that in the unoptimized medium. Further study showed that this ANN–GA-optimized medium was also effective in improving PQQ production by fed-batch mode, reaching the highest PQQ accumulation of 232.0?mg/L, which was about 47.6% increase relative to that in the original medium. The present work provided an optimized medium and developed a fed-batch strategy which might be potentially applicable in industrial PQQ production.  相似文献   

10.
Bifidobacterium pseudocatenulatum G4, a wild strain isolated from infant stools that has previously exhibited probiotic characteristics, was used in this study. The aim of this research was to improve the growth potential of this strain in milk-based medium. An initial screening study using a 23 full factorial design was carried out to identify the impact on biomass production of the various components of the medium which were skim milk, yeast extract, and glucose. Statistical analysis suggested that yeast extract had a significant positive effect on viable cell count whereas glucose had a negative effect. Response surface methodology (RSM) was then applied to optimize the use of skim milk and yeast extract. A quadratic model was derived using a 32 face-centered central composite design to represent cell mass as a function of the two variables. The optimized medium composition was found to be 2.8% skim milk and 2.2% yeast extract, w/v. The optimized medium allowed a maximum biomass of 9.129 log10 cfu/mL, 3.329 log units higher than that achieved with 10% skim milk, which is the amount commonly used. The application of RSM resulted in an improvement in the biomass production of this strain in a more cost-effective milk medium, in which skim milk use was reduced by 71.8%.  相似文献   

11.
A serine protease-producing marine bacterial strain named as PT-1 was isolated and identified as a family of Marinomonas arctica, based on molecular characterization of 16S rRNA gene sequence, phylogenetic tree, and fatty acid composition analyses. Optimized culture conditions for growth of the bacterium PT-1 and production of protease (ProA) were determined to be pH 8.0 in the presence of 5 % NaCl, at 37 °C during 24 h of incubation in the presence of 1.0 % skim milk. The molecular weight of the purified ProA was estimated to be 63-kDa as a major band by SDS-PAGE. We were intrigued to find that the activity of ProA was not inhibited by pepstatin A, chymostatin, and leupeptin known as inhibitors for cysteine protease. However, phenylmethylsulfonyl fluoride (PMSF) completely inhibited protease activity, suggesting that the ProA is like a serine protease. To the best of our knowledge, this is the first report on serine protease of Marinomonas species.  相似文献   

12.
In the present study, 58 samples of milk were analyzed for the presence of aflatoxin M1 (AFM1). The samples were purchased during the period April–May 2013 in a random manner from local stores (supermarkets, small retail shops, small groceries, and specialized suppliers) located in the surrounding of Bologna (Italy). The commercial samples of milk were either organic (n = 22) or conventional (n = 36); fresh milk samples and UHT milk samples, whole milk samples, and partially skim milk samples were present in both the two considered categories. For the quantification of AFM1 in milk, the extraction-purification technique based on the use of immunoaffinity columns was adopted and analyses were performed using HPLC-FD. AFM1 was detected in 35 samples, 11 from organic production and 24 from conventional production. No statistically (P > 0.05) significant differences were observed in the concentration of AFM1 in the two categories of product. The levels of contamination found in the positive samples ranged between 0.009 and 0.026 ng mL?1. No sample exceeded the limit defined at community level for AFM1 in milk (0.05 μg kg?1). This demonstrates the effectiveness of the checks before the placing on the market of these food products. Thus, the “aflatoxins” problem that characterized the summer of 2012 does not seem to have had effect on the contamination level of the considered milk samples.  相似文献   

13.
A marine bacterium Vibrio harveyi was adapted to grow and produce extracellular proteases in a seawater/Zobell-based medium, supplemented with skim milk under different hydrodynamic conditions, namely agitation and aeration rates. The addition of skim milk to Zobell medium enhanced fivefold the extracellular enzyme production. Protease production seemed to take place after maximum luminescence had been produced. Specific growth rate increased as a consequence of increasing agitation rates. The maximum activity of 4.28 units mg–1 protein were formed with 700 rev min–1 and 0.5 v/v/m. Protease activity detected has a molecular weight of 34 kDa. Another minor band of protease activity was found at 40 kDa.  相似文献   

14.
In order to overproduce biofungicides agents by Bacillus amyloliquefaciens BLB371, a suitable culture medium was optimized using response surface methodology. Plackett–Burman design and central composite design were employed for experimental design and analysis of the results. Peptone, sucrose, and yeast extract were found to significantly influence antifungal activity production and their optimal concentrations were, respectively, 20 g/L, 25 g/L, and 4.5 g/L. The corresponding biofungicide production was 250 AU/mL, corresponding to 56% improvement in antifungal components production over a previously used medium (160 AU/mL). Moreover, our results indicated that a deficiency of the minerals CuSO4, FeCl3 · 6H2O, Na2MoO4, KI, ZnSO4 · 7H2O, H3BO3, and C6H8O7 in the optimized culture medium was not crucial for biofungicides production by Bacillus amyloliquefaciens BLB371, which is interesting from a practical point of view, particularly for low-cost production and use of the biofungicide for the control of agricultural fungal pests.  相似文献   

15.
A newly isolated anti-Streptococcus suis bacteriocin-producing strain LPL1-5 was obtained from healthy unweaned piglets' fecal matter, and was designated as Lactobacillus pentosus LPL1-5 based on morphology, biochemical properties, and 16S rDNA sequencing analysis. The medium composition for enhanced bacteriocin production by L. pentosus LPL1-5 was optimized by statistical methodology. Yeast extract, K2HPO4 · 3H2O, and MnSO4 · H2O were identified as significant components influencing pentocin LPL1-5 production using the Plackett–Burman method. Response surface methodology was applied for further optimization. The concentrations of medium components for enhanced pentocin LPL1-5 production were as follows (g/L): lactose 20.00, tryptone 10.00, beef extract 10.00, yeast extract 14.00, MnSO4 · H2O 0.84, K2HPO4 · 3H2O 4.92, triammonium citrate 2.00, Na-acetate 5.00, MgSO4 · 7H2O 0.58, Tween 80 1.00. Under the optimized condition, a value of 3154.65 ± 27.93 IU/mL bacteriocin activity was achieved, which was 4.2-fold that of the original medium.  相似文献   

16.
Exploration of novel active anti-tumor compounds from marine microbes for pharmaceutical applications has been a continuously hot spot in natural product research. Bacterial growth and metabolites may greatly vary under different culture conditions. In this study, the effects of different culture conditions and medium components on the growth and bioactive metabolites of Serratia proteamacula 657, an anti-tumor bacterium found in our previous study, were investigated. The results showed that lower temperature, weak acidic condition and solid fermentation favored the bacterial growth and the production of active compounds. Four components in the culture medium, NaCl, peptone, yeast extract and MgSO4, were found important to the bacterial growth and active compounds production in medium optimization. Under the optimized condition of solid state fermentation at pH 6.0–7.0, 23–25 °C, with the MgSO4-free medium containing 10.0 g/L peptone, 1.0 g/L yeast extract and 19.45 g/L NaCl, the antitumor activity of S. proteamacula 657 and the yield of crude extracts increased about 15 times and 6 times than the sample obtained in the original liquid fermentation, respectively. The active components in the metabolites of S. proteamacula 657 were identified as a homolog of prodigiosin, a red bacterial pigment, based on the analysis of the NMR and GC–MS. The bacterium S. proteamacula 657, which is adapted to lower temperature, produced prodigiosin-like pigments with highly antitumor activity, suggesting the bacterium is a potential new source for prodigiosin production.  相似文献   

17.
Bacillus brevis (Brevibacillus parabrevis) ATCC 8185 synthesizes two kinds of antibiotic peptides, cyclopeptide tyrocidine and linear gramicidin. The production of linear gramicidin can be induced by the standard method (using a skim milk medium for pre-culture and beef broth for the main culture) employed for the induction of tyrocidine. In this study, we tried to determine the optimal growth medium for B. brevis ATCC 8185 for synthesizing linear gramicidin. The yield of linear gramicidin produced by the standard method was 3.11 microg/ml. When beef broth was used both as the pre-medium and the main medium, the yield of the antibiotic was only 0.59 microg/ml. To confirm the influence of skim milk, the strain was grown in a 1% skim milk medium. As a result, the amount of linear gramicidin produced reached 20.3 microg/ml. These findings show the importance of skim milk in the production of linear gramicidin. In the skim milk medium, the cells produced an extracellular protease 2 h before the linear gramicidin was expressed. The 1% skim milk medium pretreated by this protease did not allow the induction of linear gramicidin into the cells, and protease activity was not detected in the supernatant of the culture. When the cells were cultivated in a 1% egg albumin medium, protease activity from the supernatant of the culture was detected, but production of linear gramicidin was not observed. Therefore, a 1% casein medium was used for production of linear gramicidin. As a result, the yield of linear gramicidin produced in the medium reached 6.69 microg/ml. We concluded that a digested product of the extracellular protease from casein enhances linear gramicidin production.  相似文献   

18.
Polysaccharides and ganoderic acids (GAs) are the major bioactive constituents of Ganoderma species. However, the commercialization of their production was limited by low yield in the submerged culture of Ganoderma despite improvement made in recent years. In this work, twelve Ganoderma strains were screened to efficiently produce polysaccharides and GAs, and Ganoderma lucidum 5.26 (GL 5.26) that had been never reported in fermentation process was found to be most efficient among the tested stains. Then, the fermentation medium was optimized for GL 5.26 by statistical method. Firstly, glucose and yeast extract were found to be the optimum carbon source and nitrogen source according to the single-factor tests. Ferric sulfate was found to have significant effect on GL 5.26 biomass production according to the results of Plackett–Burman design. The concentrations of glucose, yeast extract and ferric sulfate were further optimized by response surface methodology. The optimum medium composition was 55 g/L of glucose, 14 g/L of yeast extract, 0.3 g/L of ferric acid, with other medium components unchanged. The optimized medium was testified in the 10-L bioreactor, and the production of biomass, IPS, total GAs and GA-T enhanced by 85, 27, 49 and 93 %, respectively, compared to the initial medium. The fermentation process was scaled up to 300-L bioreactor; it showed good IPS (3.6 g/L) and GAs (670 mg/L) production. The biomass was 23.9 g/L in 300-L bioreactor, which was the highest biomass production in pilot scale. According to this study, the strain GL 5.26 showed good fermentation property by optimizing the medium. It might be a candidate industrial strain by further process optimization and scale-up study.  相似文献   

19.
The present study is focused upon improving biomass of Kluyveromyces lactis cells expressing recombinant human interferon gamma (hIFN-γ), with the aim of augmenting hIFN-γ concentration using statistical and artificial intelligence approach. Optimization of medium components viz., lactose, yeast extract, and trace elements were performed with Box–Behnken design (BBD) and artificial neural network linked genetic algorithm (ANN-GA) for maximizing biomass of recombinant K. lactis (objective function). The studies resulted over 1.5-fold improvement in the biomass concentration in a medium composed of 80?g/L lactose, 10.353?g/L yeast extract, and 15?mL/L trace elements as compared with initial biomass value. In the same study hIFN-γ concentration reached 881?µg/L which was 2.28-fold higher as compared with initial hIFN-γ concentration obtained in unoptimized medium. Further the batch fermentation study displayed mixed growth associated kinetics with the maximum hIFN-γ production rate of 1.1?mg/L. BBD and ANN-GA, both optimization techniques predicted a higher lactose concentration was clearly beneficial for augmenting K. lactis biomass which in turn increased hIFN-γ concentration.  相似文献   

20.
The current research study deals with the screening of a potent vanillin-producing microorganism among 96 isolated strains. Biochemical characterization and molecular identification confirmed that the isolated strain belongs to the Klebsiella pneumoniae bacteria, so it was denoted as Klebsiella pneumoniae P27. The optimization of medium components for the enhanced production of vanillin was carried out using two-stage statistical experimental designs, in which the significant medium components for vanillin production were screened using a Plackett-Burman experimental design. And the optimal levels of those noteworthy factors were determined by using central composite design. The statistical optimization of medium components resulted in increases in vanillin production and vanillyl alcohol oxidase activity of 2.05-fold and 3.055-fold, respectively. The highest vanillin production (30.88 mg/L) and vanillyl alcohol oxidase activity (0.044 U/mL) was observed after 16 h of incubation in the presence of 0.26 mL/L creosol, 8.06 g/L yeast extract and 2.77 g/L NH4NO3 in the production medium. The optimally produced vanillin was extracted and confirmed using FTIR and LCMS spectral analysis. The results of the current study support a statistical process optimization approach as a potential technique for the enhanced production of vanillin from creosol by using newly isolated Klebsiella pneumoniae P27 bacterial strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号