首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
黑曲霉固态发酵生产单宁酶的条件优化   总被引:1,自引:0,他引:1  
研究采用响应面法优化黑曲霉固态发酵生产单宁酶的培养条件。应用Plackett—Burman试验筛选出重要影响因子:五倍子粉含量、(NH4)2SO4浓度以及接种孢子量,最陡爬坡试验逼近最大响应区域。应用Box.Behnken响应面试验对重要影响因子进一步优化。得到最佳培养条件:每250mL三角瓶中装入1.0g五倍子粉、4.4g稻壳和0.5g麸皮、液固比(mL/g)2:1且营养盐溶液组成为(NH4)2s0421g/L、MgSO4·7H2O1g/L、NaCl1g/L,培养基pH自然,接种5.7×10^7个孢子后在30℃温度下培养4d。在此条件下,单宁酶产量从40U/g提高到114U/g,3次重复验证性试验平均值为115U/g,验证了模型的可靠性。  相似文献   

2.
Microbial phytase is used to reduce the environmental loading of phosphorus from animal production facilities. The limiting factors in the use of this enzyme in animal feeds can be overcome by solid-state fermentation (SSF), which is a promising technology for commercial enzyme production with lower production costs. Inoculum quality and the influence of inoculum quality on phytase production are important factors which need in-depth investigation before scaling-up of high-yielding fermentation process. A full factorial experimental design for 240 h with sampling at every 24 h was used to determine the effects of the treatments, inoculum age (plate and liquid culture), media composition and the duration of SSF on the production of fungal biomass and phytase in SSF systems using Aspergillus niger. The optimal treatment combination for maximal phytase production was determined by statistically comparing all treatments at each sampling time. Both 7- and 14-day plate cultures and M1+ medium composition with 72-h-old liquid inoculum treatments resulted in optimal phytase production at 144 h of SSF, which was the shortest duration observed for maximal phytase production. This resulted in maximal phytase production with a mean of 884±121 U/g substrate, while the maximal phytase production observed at 216 h of SSF (mean phytase activity of 1008±121 U/g substrate), with the same treatment combinations, was not statistically significant from that at 144 h of SSF. Phytase production was strongly growth-associated with younger inocula. The significant treatment variables, age of liquid inoculum and the duration of SSF, were used to predict the system response for phytase production using response surface methodology. From the response surface model, the optimal response of the experiment was predicted and the reliability of the prediction was checked with the verification experiment. Journal of Industrial Microbiology & Biotechnology (2001) 26, 161–170. Received 06 June 2000/ Accepted in revised form 14 October 2000  相似文献   

3.
The production of citric and gluconic acids from fig by Aspergillus niger ATCC 10577 in solid-state fermentation was investigated. The maximal citric and gluconic acids concentration (64 and 490 g/kg dry figs, respectively), citric acid yield (8%), and gluconic acid yield (63%) were obtained at a moisture level of 75%, initial pH 7.0, temperature 30°C, and fermentation time in 15 days. However, the highest biomass dry weight (40 g/kg wet substrate) and sugar utilization (90%) were obtained in cultures grown at 35°C. The addition of 6% (w/w) methanol into substrate increased the concentration of citric and gluconic acid from 64 and 490 to 96 and 685 g/kg dry fig, respectively. Journal of Industrial Microbiology & Biotechnology (2000) 25, 298–304. Received 15 April 2000/ Accepted in revised form 11 August 2000  相似文献   

4.
黑曲霉固态发酵及酶解玉米皮   总被引:2,自引:0,他引:2  
以玉米提取淀粉后的玉米皮渣为主要原料,采用黑曲霉固态发酵法产酶再酶解的二步法降解玉米皮中纤维素类物质。经Plackett-Burman法及响应面设计优化发酵条件得:温度30℃,接种量10%,初始水分体积分数60%,物料厚度2.47 cm,初始pH 5.79,发酵时间6 d;滤纸比酶活可达11.01 U/g,较原始酶活提高了40.61%;产酶结束后加入pH 4.8醋酸-醋酸钠缓冲液,置于50℃下酶解144 h,中性洗涤纤维与酸性洗涤纤维降解率分别为46.09%、48.82%,还原糖质量分数达到9.02%。  相似文献   

5.
Aims:  To investigate the ability of the citric acid-producing strain Aspergillus niger ATCC 9142 to utilize the ethanol fermentation co-product corn distillers dried grains with solubles for citric acid production following various treatments.
Methods and Results:  The ability of A. niger ATCC 9142 to produce citric acid and biomass on the grains was examined using an enzyme assay and a gravimetric method, respectively. Fungal citric acid production after 240 h was higher on untreated grains than on autoclaved grains or acid-hydrolysed grains. Fungal biomass production was enhanced after autoclaving and acid-hydrolysis of the grains. Phosphate supplementation to the grains slightly stimulated citric acid production while methanol addition decreased its synthesis. Using the phosphate-supplemented grains, the optimal incubation temperature, initial moisture content of the grains and the length of fermentation time for ATCC 9142 citric acid production were determined to be 25°C, 82% and 240 h, respectively.
Conclusions:  A. niger ATCC 9142 synthesized citric acid on corn distillers dried grains with solubles. The phosphate-treated grains increased citric acid production by the strain.
Significance and Impact of the Study:  The ethanol fermentation co-product corn distillers dried grains with solubles could be useful commercially as a substrate for A. niger citric acid production.  相似文献   

6.
Aspergillus foetidus ACM 3996 (=FRR 3558) and three strains of Aspergillus niger ACM 4992 (=ATCC 9142), ACM 4993 (=ATCC 10577), ACM 4994 (=ATCC 12846) were compared for the production of citric acid from pineapple peel in solid-state fermentation. A. niger ACM 4992 produced the highest amount of citric acid, with a yield of 19.4g of citric acid per 100g of dry fermented pineapple waste under optimum conditions, representing a yield of 0.74g citric acid/g sugar consumed. Optimal conditions were 65% (w/w) initial moisture content, 3% (v/w) methanol, 30°C, an unadjusted initial pH of 3.4, a particle size of 2mm and 5ppm Fe2+. Citric acid production was best in flasks, with lower yields being obtained in tray and rotating drum bioreactors.  相似文献   

7.
利用黑曲霉固态发酵啤酒糟生产饲料复合酶的研究   总被引:2,自引:0,他引:2  
以啤酒糟为主要基质,利用黑曲霉固态发酵生产酸性蛋白酶、木聚糖酶和纤维素酶等多种饲料复合酶,研究了黑曲霉固态发酵培养基组成对复合酶酶活的影响,确定最优培养基配方为:啤酒糟75%,麸皮25%,硫酸铵1%,KH_2PO_4 0.2%,MnSO_4 0.1%、ZnSO_4 0.2%,料水比1:2。在适宜的发酵条件下,经30℃发酵5 d,烘干后得到的复合酶制剂中,具有多种酶活性(以干基计)。其中酸性蛋白酶活力3 800 U/g,木聚糖酶活力12 00 U/g和纤维素酶活力18 U/g。  相似文献   

8.
Three Aspergillus nigerstrains were grown in submerged and solid state fermentation systems with sucrose at 100 g l–1. Average measurements of all strains, liquid vs solid were: final biomass (g l–1), 11 ± 0.3 vs 34 ± 5; maximal enzyme titres (U l–1) 1180 ± 138 vs 3663 ± 732; enzyme productivity (U l–1h–1) 20 ± 2 vs 87 ± 33 and enzyme yields (U/gX) 128 ± 24 vs 138 ± 72. Hence, better productivity in solid-state was due to a better mould growth.  相似文献   

9.
Xylanase production by Aspergillus niger NRRL‐567 in solid‐state fermentation (koji fermentation) was optimized using 24 factorial design and response surface methodology. The evaluated variables were the initial moisture level and concentration of inducers [veratryl alcohol (VA), copper sulphate (CS), and lactose (LAC)], leading to the response of xylanase production. Initial moisture level and LAC were found to be the most significant variable for xylanase production (p<0.05). The highest xylanase production was observed with 3578.8 ± 65.3 IU/gds (gram dry substrate) under optimal conditions using initial moisture of 85% (v/w), pH 5.0 and inducers VA (2 mM/kg), LAC 2% (w/w), and CS (1.5 mM/kg) after 48 h of incubation time. Higher xylanase activity of 3952 ± 78.3 IU/gds was attained during scale‐up of the process in solid‐state tray fermentation under optimum conditions after 72 h of incubation time. The present study demonstrates that A. niger NRRL‐567 can efficiently be used to achieve xylanase production with an economical and environmental benefit in solid‐state tray fermentation. The developed process can be used to develop an effective process for commercially feasible bioproduction of xylanases for speciality applications, such as conversion of lignocellulosic biomass to biofuels and other value‐added products.  相似文献   

10.
在液态发酵条件下,采用单因素实验确定了Aspergillus niger PZ331产异淀粉酶的最适碳源和氮源,分别为蔗糖和硝酸铵。在上述基础上利用Plackett-Burman设计对影响产异淀粉酶的因素进行评价,并筛选出硝酸铵、接种量、培养温度3个主要因素;继而利用响应面设计优化了最佳硝酸铵浓度、接种量和培养温度。最终确定了最优培养条件为:蔗糖10 g/L,硝酸铵10 g/L,磷酸氢二钾3 g/L,硫酸亚铁0.01 g/L,硫酸镁1 g/L,起始p H值4.2;接种量2%(孢子浓度为107cfu/m L),30℃培养72 h,酶活达137.3μ/m L;比基础培养基的提高了1.71倍左右。  相似文献   

11.
AIMS: Analysis of regulators for modulated gluconic acid production under surface fermentation (SF) condition using grape must as the cheap carbohydrate source, by mutant Aspergillus niger ORS-4.410. Replacement of conventional fermentation condition by solid-state surface fermentation (SSF) for semi-continuous production of gluconic acid by pseudo-immobilization of A. niger ORS-4.410. METHODS AND RESULTS: Grape must after rectification was utilized for gluconic acid production in batch fermentation in SF and SSF processes using mutant strain of A. niger ORS-4.410. Use of rectified grape must led to the improved levels of gluconic acid production (80-85 g l(-1)) in the fermentation medium containing 0.075% (NH4)2HPO4; 0.1% KH2PO4 and 0.015% MgSO4.7H2O at an initial pH 6.6 (+/-0.1) under surface fermentation. Gluconic acid production was modulated by incorporating the 2% soybean oil, 2% starch and 1% H2O2 in fermentation medium at continuously high aeration rate (2.0 l min(-1)). Interestingly, 95.8% yield of gluconic acid was obtained when A. niger ORS-4.410 was pseudo-immobilized on cellulose fibres (bagasse) under SSF. Four consecutive fermentation cycles were achieved with a conversion rate of 0.752-0.804 g g(-1) of substrate into gluconic acid under SSF. CONCLUSIONS: Use of additives modulated the gluconic acid production under SF condition. Semi-continuous production of gluconic acid was achieved with pseudo-immobilized mycelia of A. niger ORS-4.410 having a promising yield (95.8%) under SSF condition. SIGNIFICANCE AND IMPACT OF THE STUDY: The bioconversion of grape must into modulated gluconic acid production under SSF conditions can further be employed in fermentation industries by replacing the conventional carbohydrate sources and expensive, energy consuming fermentation processes.  相似文献   

12.
为获得高产菊粉酶的黑曲霉菌株,以Aspergillus niger YH-1为出发菌株,经过亚硝基胍(NTG)诱变,以高温高菊芋粉相结合的方式进行梯度驯化,选育出一株产菊粉酶菌株YH-3,并运用响应面实验方法对该菌株的培养基进行优化。确定了最佳培养基组成:菊芋粉25.2 g/L、豆饼粉40 g/L、蔗糖酯4.9 g/L、NaCl 5.5 g/L。发现内切菊粉酶活力(I)由60.9 U/mL提高到165.0 U/mL,比出发菌株提高了1.7倍。研究证明蔗糖酯对于黑曲霉YH-3发酵产菊粉酶是一种有效的促进剂。  相似文献   

13.
Statistics-based experimental design was used to investigate the effect of medium components (starch, peptone, ammonium sulfate, yeast extract, and CaCl2.2H2O) on hen's egg white lysozyme production by Aspergillus niger HEWL WT-13-16. A 2(5-1) fractional factorial design augmented with center points revealed that peptone, starch, and ammonium sulfate were the most significant factors, whereas the other factors were not important within the levels tested. The method of steepest ascent was used to approach the proximity of optimum. This task was followed by a central composite design to develop a response surface for medium optimization. The optimum medium composition for lysozyme production was found to be: starch 34 g L-1, peptone 34 g L-1, ammonium sulfate 11.9 g L-1, yeast extract 0.5 g L-1, and CaCl2.2H2O 0.5 g L-1. This medium was projected to produce, theoretically, 212 mg L-1 lysozyme. Using this medium, an experimental maximum lysozyme concentration of 209+/-18 mg L-1 verified the applied methodology.  相似文献   

14.
15.
AIMS: Alpha-galactosidase is applied in food and feed industries for hydrolysing raffinose series oligosaccharides (RO) that are the factors primarily responsible for flatulence upon ingestion of soybean-derived products. The objective of the current work was to develop an optimal culture medium for the production of alpha-galactosidase in solid-state fermentation (SSF) by a mutant strain Aspergillus foetidus. METHODS AND RESULTS: Response surface methodology (RSM) was applied to evaluate the effects of variables, namely the concentrations of wheat bran, soybean meal, KH(2)PO(4), MnSO(4).H(2)O and CuSO(4).5H(2)O on alpha-galactosidase production in the solid substrate. A fractional factorial design (FFD) was firstly used to isolate the main factors that affected the production of alpha-galactosidase and the central composite experimental design (CCD) was then adopted to derive a statistical model for optimizing the composition of the fermentation medium. The experimental results showed that the optimum fermentation medium for alpha-galactosidase production by Aspergillus foetidus ZU-G1 was composed of 8.2137 g wheat bran, 1.7843 g soybean meal, 0.001 g MnSO(4).H(2)O and 0.001 g CuSO(4).5H(2)O in 10 g dry matter fermentation medium. CONCLUSIONS: After incubating 96 h in the optimum fermentation medium, alpha-galactosidase activity was predicted to be 2210.76 U g(-1) dry matter in 250 ml shake flask. In the present study, alpha-galactosidase activity reached 2207.19 U g(-1) dry matter. SIGNIFICANCE AND IMPACT OF THE STUDY: Optimization of the solid substrate was a very important measure to increase enzyme activity and realize industrial production of alpha-galactosidase. The process of alpha-galactosidase production in laboratory scale may have the potential to scale-up.  相似文献   

16.
Cost-effective production of proteases, which are robust enough to function under harsh process conditions, is always sought after due to their wide industrial application spectra. Solid-state production of enzymes using agro-industrial wastes as substrates is an environment-friendly approach, and it has several advantages such as high productivity, cost-effectiveness, being less labor-intensive, and less effluent production, among others. In the current study, different agro-wastes were employed for thermoalkali-stable protease production from Bacillus subtilis K-1 under solid-state fermentation. Agricultural residues such as cotton seed cake supported maximum protease production (728?U?ml?1), which was followed by gram husk (714?U?ml?1), mustard cake (680?U?ml?1), and soybean meal (653?U?ml?1). Plackett–Burman design of experiment showed that peptone, moisture content, temperature, phosphates, and inoculum size were the significant variables that influenced the protease production. Furthermore, statistical optimization of three variables, namely peptone, moisture content, and incubation temperature, by response surface methodology resulted in 40% enhanced protease production as compared to that under unoptimized conditions (from initial 728 to 1020?U?ml?1). Thus, solid-state fermentation coupled with design of experiment tools represents a cost-effective strategy for production of industrial enzymes.  相似文献   

17.
Growth of Aspergillus niger and glucoamylase production correlated well with the water activity of the substrate (wheat bran plus corn flour) in a solid-state fermentation. Both were maximal at an initial water activity of 0.936. Glycoamylase reached 550 units/g dry substrate after 96 h.The authors are with the Biotechnology Unit, Regional Research Laboratory, CSIR, Trivandrum-695 019, India  相似文献   

18.
Aspergillus niger CFTRI 30 produced 1.3 g citric acid/10 g dry coffee husk in 72 h solid-state fermentation when the substrate was moistened with 0.075 M NaOH solution. Production was increased by 17% by adding a mixture of iron, copper and zinc to the medium but enrichment of the moist solid medium with (NH4)2SO4, sucrose or any of four enzymes did not improve production. The production of about 1.5 g citric acid/10 g dry coffee husk at a conversion of 82% (based on sugar consumed) under standardized conditions demonstrates the commercial potential of using the husk in this way.The authors are with the Department of Microbiology and Bioengineering, Central Food Technological Research Institute, Mysore-570 013, India;  相似文献   

19.
利用响应面方法对固态发酵生产生物农药盾壳霉 (Coniothyriumminitans)孢子的培养基条件进行了优化研究。响应面分析结果表明 ,淀粉、尿素和KH2 PO4与Coniothyriumminitans的孢子产量存在显著的相关性 ,通过求解回归方程得到优化发酵条件 :当淀粉为 36 .4 3g L ,尿素3.91g L和KH2 PO41.0 2 g L时 ,孢子产量达到理论最大值 9.94× 10 9孢子 g麸皮 ,在摇瓶发酵条件下 ,实际最大孢子产量为 1.0 4× 10 10 孢子 g麸皮  相似文献   

20.
Solid-state fermentation (SSF) usingAspergillus carbonarius with canola meal as a substrate showed that production of phytase was associated with growth; maximum activity was achieved after 72 h. Apparent 25% and 10% increases in the protein content of the canola meal were noticed after 48 h and 72 h, respectively but total carbohydrate concentration had fallen by 25% by the end of fermentation. The rate of decrease of phytic acid content was optimum with a moisture content between 53% and 60%; homogenization of the inoculum for 120 s led to the greatest biomass and lowest phytic acid content. Inoculation of sterile meal led to lower phytic acid contents than inoculation of non-sterile meal.The authors are with the Department of Chemical Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号