首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quality of water sources and its potential health implications to adults and children populations of respective major communities in Northern Cross-River was assessed. Water samples (n = 10/water source/site) were collected from three (Okpoma, Okuku and Ugaga) communities and heavy metal concentrations (Lead (Pb), Cadmium (Cd), Chromium (Cr), Manganese (Mn), Nickel (Ni), Copper (Cu), Cobalt (Co), and Zinc (Zn)) were evaluated using Atomic Absorption Spectrometer (AAS). Overall, Pb, Cd, Ni, and Co were higher than drinking water guidelines, while only Cr, Mn, Cu, and Zn were within the permissible limits. The estimated average daily intake (EADI) and target hazard quotient (THQ) were used to determine risk implications for adult and children consumer populations. The EADI for Pb in adults for borehole water, Pb and Cr by child consumer population for borehole and shallow well water exceeded the reference dose (RfD) by USEPA. The THQ for adult population were >1 for Pb in borehole water and >1 for Pb and Cr across all sites for the child consumer population. Overall, our findings indicate toxicity and higher hazard risk for both adult (Pb) and children (Pb and Cr) populations that source drinking water from borehole and shallow well water in these communities.  相似文献   

2.
Concentrations of four metals (Cu, Zn, Pb, and Cd) in the sediments of the Anzali Lagoon in the northern part of Iran were determined to evaluate the level of contamination and spatial distribution. The sediments were collected from 21 locations in the lagoon. At each lagoon site a core, 60 cm long, was taken. The ranges of the measured concentrations in the sediments are as follows: 17–140 mg kg?1 for Cu, 20–113 mg kg?1 for Zn, 1–37 mg kg?1 for Pb and 0.1–3.5 mg kg?1 for Cd in surficial (0-20 cm) and 16–87 mg kg?1 for Cu, 28.5–118 mg kg?1 for Zn, 3–20 mg kg?1 for Pb and 0.1–3.5 mg kg?1 for Cd in deep (40–60 cm) sediments. The results of the geoaccumulation index (Igeo) show that Cd causes moderate to heavy pollution in most of the study area. Environmental risk evaluation showed that the pollution in the Anzali Lagoon is moderate to considerable and the ranking of the contaminants followed the order: Cd > Cu > Pb > Zn. Some locations present severe pollution by metals depending on the sources, of which sewage outlets and phosphate fertilizers are the main sources of contaminants to the area.  相似文献   

3.
This research was conducted to assess the contamination of heavy metals in the water, sediment, aquatic plants and animals around a municipal landfill. The heavy metals were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES). The concentrations of cadmium (Cd), chromium (Cr), and lead (Pb) in water and sediment were Not detected (ND), 0.05 ± 0.98, and 0.02 ± 0.01 mg/L; and 0.47 ± 0.23, 18.65 ± 11.39, and 5.36 ± 2.08 mg/kg, respectively. A total of 24 aquatic plants from 4 species were collected from the municipal landfill. Cd concentrations in all plant species were within the standard, while Cr and Pb exceeded the standard. Forty-four fish from 4 species, 29 freshwater snails from 3 species, 10 freshwater prawns from 1 species, and 9 freshwater crabs from 1 species were collected. Cd and Cr concentrations in 2 species of fish samples exceeded the standard and Pb concentration in all fish species exceeded the standard. Cd and Pb concentrations in all freshwater snails were within the standard, except Cr. Meanwhile, Cd and Pb in freshwater prawns and snails were within the standard, except Cr. Five species of frogs were collected. Cd and Cr concentrations in 2 species exceeded the standard. Pb concentrations in all frog species exceeded the standard. The pattern of metal accumulation was fish > frogs > freshwater snails > freshwater prawns = freshwater crab (Cd), freshwater prawn > frogs > freshwater crab = freshwater snail > fish (Cr), and freshwater prawn > fish > frogs > freshwater snail > freshwater crab (Pb).  相似文献   

4.
The concentrations of Pb and Cd, and trace elements (Cu and Zn) in the urban topsoil, rook (Corvus frugilegus) feces and feathers and human scalp hair were analyzed to examine the potential ecological risk posed by Pb and Cd on local residents of Qiqihar City, northeastern China. Results revealed that the Cd concentrations in the topsoil were ranged from 0.14 to 3.55 mg kg?1 dry weight (dw). The maximal geoaccumulation indices [a value from logarithmic (a measured metal content/1.5 × background content of the metal in this region), introduced by Muller] of Cd exceeded 3.5, which suggested that this region was seriously contaminated by Cd. The corresponding average detectable concentrations in C. frugilegus feathers and feces were 1.38 and 3.97 mg kg?1 dw for Pb and 1.04 and 0.69 mg kg?1 dw for Cd. High Pb and Cd concentrations, respectively, ranging from 7.46 to 24.9 mg kg?1 dw and from 0.35 to 0.92 mg kg?1 dw were also detected in the human scalp hair samples. These high Pb and Cd concentrations in C. frugilegus and local people were possibly associated with local industrial wastes and vehicle exhausts. The external tissues (feces and feather) of the rook species can be considered as an indicator of potential Cd toxic risk in this species; however, the human scalp hair is not a reliable biomarker for risk of Pb and Cd in the human being. Effective measures should be established to reduce the inputs of Pb and Cd into the urban environment and to protect the health of local people.  相似文献   

5.
In Dabaoshan mine, dumping sites were the largest pollution source to the local environment. This study analyzed the activation and ecological risk of heavy metals in waste materials from five dumping sites. Results indicated that the acidification of waste materials was severe at all dumping sites, and pH decreased below 3.0 at four of the five sites. There was a drastic variation in Cu, Zn, Pb, and Cd concentrations in different sites. Site A with 12915.3 mg kg?1 Pb and 7.2 mg kg?1 Cd and site C with 1936.2 mg kg?1 Cu and 5069.0 mg kg?1 Zn were severely polluted. Higher concentrations of water-soluble Cu were probably the critical constraint for local pioneer plants. A significant positive correlation was found between the concentrations of water-soluble and HOAc-extractable elements, and the regression analysis showed that, compared with Cu, Zn and Cd, Pb was more difficult to be transformed from HOAc extractable to water soluble. Concentration of water soluble metals should be an important index, same as concentration of HOAc extractable metals, in assessing ecological risks, availability, and toxicity of heavy metals. The modified ecological risk index indicated that all dumping sites had very high potential ecological risks. It is necessary to decrease the availability of heavy metals to reduce the impact of waste materials on environment.  相似文献   

6.

Background and Aims

Metal (e.g. Cd and Pb) pollution in agricultural soils and crops have aroused considerable attention in recent years. This study aimed to evaluate the effects of ROL and Fe plaque on Cd and Pb accumulation and distribution in the rice plant.

Methods

A rhizobag experiment was employed to investigate the correlations among radial oxygen loss (ROL), Fe plaque formation and uptake and distribution of Cd and Pb in 25 rice cultivars.

Results

Large differences between the cultivars were found in rates of ROL (1.55 to 6.88 mmol O2 kg?1 root d.w. h?1), Fe plaque formation (Fe: 6,117–48,167 mg kg?1; Mn: 127–1,089 mg kg?1), heavy metals in shoot (Cd: 0.13–0.35 mg kg?1; Pb: 4.8–8.1 mg kg?1) and root tissues (Cd: 1.1–3.5 mg kg?1; Pb: 45–199 mg kg?1), and in Fe plaque (Cd: 0.54–2.6 mg kg?1; Pb: 102–708 mg kg?1). Rates of ROL were positively correlated with Fe plaque formation and metal deposition on root surfaces, but negatively correlated with metal transfer factors of root/plaque and distributions in shoot and root tissues.

Conclusions

ROL-induced Fe plaque promotes metal deposition on to root surfaces, leading to a limitation of Cd and Pb transfer and distribution in rice plant tissues.  相似文献   

7.
The present study was undertaken to assess the non-carcinogenic human health risk of heavy metals through the ingestion of locally grown and commonly used vegetables viz. Raphanus sativus (root vegetable), Daucus carota (root vegetable), Benincasa hispida (fruit vegetable) and Brassica campestris leaves (leafy vegetable) in a semi-urbanized area of Haryana state, India. Heavy metal quantification of soil and vegetable samples was done using flame atomic absorption spectrophotometer. Lead, cadmium and nickel concentration in vegetable samples varied in range of 0.12–6.54 mg kg?1, 0.02–0.67 mg kg?1 and <0.05–0.41 mg kg?1, respectively. Cadmium and lead concentration in some vegetable samples exceeded maximum permissible limit given by World Health Organization/Food and Agriculture Organization and Indian standards. Much higher concentrations of Pb (40–190.5 mg kg?1), Cd (0.56–9.85 mg kg-1) and Ni (3.21–45.87 mg kg?1) were reported in corresponding vegetable fields’ soils. Correlation analysis revealed the formation of three primary clusters, i.e. Cu–Cd, Cd–Pb and Ni–Zn in vegetable fields’ soils further supported by cluster analysis and principal component analysis. Bioconcentration factor revealed that heavy metals’ uptake was more by leafy vegetable than root and fruit vegetables. Hazard index of all the vegetables was less than unity; thus, the ingestion of these vegetables is unlikely to pose health risks to the target population.  相似文献   

8.
Microbe-enhanced phytoremediation has been considered as a promising measure for the remediation of metal-contaminated soils. In this study, two bacterial strains JYX7 and JYX10 were isolated from rhizosphere soils of Polygonum pubescens grown in metal-polluted soil and identified as of Enterobacter sp. and Klebsiella sp. based on 16S rDNA sequences, respectively. JYX7 and JYX10 showed high Cd, Pb and Zn tolerance and increased water-soluble Cd, Pb and Zn concentrations in culture solution and metal-added soils. Two isolates produced plant growth-promoting substances such as indole acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic deaminase, and solubilized inorganic phosphate. Based upon their ability in metal tolerance and solubilization, two isolates were further studied for their effects on growth and accumulation of Cd, Pb, and Zn in Brassica napus (rape) by pot experiments. Rapes inoculated with JYX7 and JYX10 had significantly higher dry weights, concentrations and uptakes of Cd, Pb, Zn in both above-ground and root tissues than those without inoculation grown in soils amended with Cd (25 mg kg?1), Pb (200 mg kg?1) or Zn (200 mg kg?1). The present results demonstrated that JYX7 and JYX10 are valuable microorganism, which can improve the efficiency of phytoremediation in soils polluted by Cd, Pb, and Zn.  相似文献   

9.
The objectives of the present study were to investigate the mitigation of lead (Pb), cadmium (Cd), and arsenic (As) in a multi-metal contaminated soil and their accumulation in rice plants (Oryza sativa L., cv II You 93) using a combined amendment (CMF, calcium carbonate + metakaolin + fused calcium–magnesium phosphate fertilizer). The results showed that application of CMF was effective in reducing the acid-extractable concentrations of soil Pb and Cd. The exchangeable concentrations of soil As showed an initial decrease followed by a gradual increase. The application of 0.2% CMF notably reduced the concentrations of Pb, Cd, and As in brown rice by 46.5%, 43.6%, and 32.0%, respectively. The concentration of As in brown rice was 0.179 mg kg?1 at 0.2% CMF, which met the maximum levels of contaminants in foods of China (MLs) (the ML of Pb, Cd, and As is 0.2 mg kg?1 according to the China national standard GB 2762-2012). At 1.6% CMF, the concentrations of Pb and Cd in brown rice were 0.002 and 0.185 mg kg?1, respectively, i.e., reductions of 99.6% and 74.1%, and these values also fell within the MLs.  相似文献   

10.
Marmara Sea is one of the main catching areas of mussels (Mytilus galloprovincialis) in Turkey, and a significant portion of the harvest has been exported mainly to European countries. In this study, Zn, Cu, Cd, Hg, and Pb in mussels from ten catching areas in Marmara Sea were analyzed to investigate health risks associated with consuming mussels. Mercury was not detected (<0.15 ppb) in any of the samples. The highest concentrations of Cu and Cd were 3.473 and 0.740 mg kg?1 (wet weight, WW), respectively, well below the maximum permissible levels. All samples contained Zn higher than 50 mg kg?1, while Pb was above the limits in the samples from stations 1, 4, 6, and 8. Mussels from Marmara Sea are safe regarding Cu, Cd, and Hg but may contain Zn and Pb above the permissible limits. However, metal contents of mussels from Marmara Sea are mostly lower than those of the regions in other areas of the world. It was concluded that Marmara Sea has a potential of being a safe source of mussels if industrial inputs somewhat reduced and controlled. Concentrations of heavy metals in mussels must be monitored comprehensively and periodically with respect to the consumer health.  相似文献   

11.
Heavy metals accumulation in soils poses a potential threat to ecosystems, which, in turn, threat human health through food chains. Therefore, remediating polluted sites is important to environment and humanity. In this investigation, statice (L. sinuatum) was exposed to Cd (0, 15, 30, 60 mg kg?1 soil) or Pb (0, 100, 150, 300 mg kg?1 soil) in a pot experiment to assess its tolerance to each metal and study its phytoaccumulation capability. The benefits of mycorrhization (mixture of Glomus mosseae and G. intraradices) were also studied simultaneously. Single exposure to Cd or Pb reduced the plant growth, but statice was still relatively tolerant to both metals. The plants accumulated both metals in their roots; little was translocated to the shoots. Total Pb and total Cd accumulated by the roots was approximately 2 and 3 times higher in mycorrhizal than non-mycorrhizal plants (49 versus 147 and 595 versus 956 μg plant?1) respectively; however, mycorrhization alleviated metal phytotoxicity. The results suggest that statice is a potential candidate to be used as an ornamental plant in lead and cadmium polluted sites, mainly inoculated with arbuscular mycorrhizae. Besides that, it would be useful as a Pb or Cd controlling agent by means of phytostabilization.  相似文献   

12.
This experiment was conducted to investigate the potential risk of toxic elements in paddy soils and rice straws, bran, and husked grains in Kuchesfahan, Gilan, Iran. The average content of total and DTPA-extractable of Cd, Cu, Fe, Mn, Ni, Pb, and Zn were 7.0, 26.3, 20728.8, 1516.7, 43.8, 16.6, and 211.8?mg kg?1, and 0.32, 14.1, 97.3, 63.4, 1.7, 4.8, and 56.2?mg kg?1, respectively. In addition, the average content of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in rice grain was 0.16, 2.4, 135.5, 34.1, 2.0, 0.6, and 15.0?mg kg?1, respectively. The average transfer factor for Cd, Cu, Fe, Mn, Ni, Pb, and Zn from soil to straw was 0.38, 0.16, 0.004, 0.13, 0.3, 0.04, and 0.09, respectively. The average values of estimated daily intake for Cd, Cu, Fe, Mn, Ni, Pb, and Zn through rice consumption for adult are respectively, estimated to be 0.0004, 0.005, 0.32, 0.08, 0.005, 0.0015, and 0.035?mg kg?1 body weight per day. There was no health risk index (HRI) values for adult greater than 1 (except three samples for Fe, and one sample for Mn and Cd); indicated that intake of single metal through the consumption of rice was safe. The average of heath index (HI) value for rice consumption was 0.33 and 0.35 for adult and children, respectively. Therefore, combination of several potentially toxic elements may not cause risk to local residents. Spatial distributions of HRI were obtained for potentially toxic metals in husked grains.  相似文献   

13.
Phytostabilization aims to reduce environmental and health risks arising from contaminated soil. To be economically attractive, plants used for phytostabilization should produce valuable biomass. This study investigated the biomass production and metal allocation to foliage and wood of willow (Salix viminalis L.), poplar (Populus monviso), birch (Betula pendula), and oak (Quercus robur) on five different soils contaminated with trace elements (TE), with varying high concentrations of Cu, Zn, Cd, and Pb as well as an uncontaminated control soil. In the treatment soils, the biomass was reduced in all species except oak. There was a significant negative correlation between biomass and foliar Cd and Zn concentrations, reaching up to 15 mg Cd kg?1 and 2000 mg Zn kg ?1 in willow leaves. Lead was the only TE with higher wood than foliage concentrations. The highest Pb accumulation occurred in birch with up to 135 mg kg ?1 in wood and 78 mg kg ?1 in foliage. Birch could be suitable for phytostabilization of soils with high Cd and Zn but low Pb concentrations, while poplars and willows could be used to stabilise soils with high Cu and Pb and low Zn and Cd concentrations.  相似文献   

14.
Accumulation of different metals and metalloids was assessed in two vegetables radish (Raphanus sativus L.) and spinach (Spinacea oleracea L.) irrigated with domestic wastewater in the peri-urban areas of Khushab City, Pakistan. In general, the metal and metalloid concentrations in radish and spinach were higher at site-II treated with sewage water than those found at site-I treated with canal water. In case of radish at both sites the levels of metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, and Pb) were below the permissible level except those of Mn, Ni, Mo, Cd, and Pb. At both sites, the transfer factor ranged from 0.047–228.3 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: As > Fe > Ni > Zn > Cd > Mo > Se > Co > Pb > Mn > Cr > Cu, respectively. While in case of spinach at both sites, the concentrations of metals and metalloids in vegetable samples irrigated with canal and sewage water were observed below the permissible level except Mn, Ni, Zn, Mo, and Pb. At both sites, the transfer factor ranged from 0.038–245.4 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: Cd > Ni > Co > Se > Mn > Zn > Mo > Pb > Fe > Cr > As > Cu, respectively.  相似文献   

15.
A total of 455 agricultural soil samples from four nonferrous mines/smelting sites in Shaoguan City, China, were investigated for concentrations of 10 heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn). The mean concentrations of the metals were 72.4, 5.16, 13.3, 54.8, 84.5, 1.52, 425, 28.2, 529, and 722 mg kg?1, respectively. The values for As, Cd, Hg, Pb, and Zn were more than 8 and 1.5 times higher than their background values in this region and the limit values of Grade II soil quality standard in China, respectively. Estimated ecological risks based on contamination factors and potential ecological risk factors were also high or very high for As, Cd, Hg, and Pb. Multivariate analysis (Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) strongly implied three distinct groups; i.e., As/Cu/Hg/Zn, Co/Cr/Mn/Ni, and Cd/Pb. Local anomalies for As, Cu, Hg, and Zn by a probably anthropogenic source (identified as mining activity), Co, Cr, Mn, and Ni by natural contribution, and a mixed source for Cd and Pb, were identified. This is one of the few studies with a focus on potential sources of heavy metals in agricultural topsoil around mining/smelting sites, providing evidence for establishing priorities in the reduction of ecological risks posed by heavy metals in Southern China and elsewhere.  相似文献   

16.
The soils of many abandoned mine sites in the central region of Spain are heavily polluted with a number of different metals. Having frequently found Agrostis castellana growing at these old mine sites, this study was designed to assess its remediation capacity for this type of setting. In an initial field study, plant specimens were collected from 4 abandoned mine sites to determine pollutant concentrations in their roots and shoots. This was followed by a 4-year bioassay in a controlled environment in which soils collected from the mines were used to set up microcosms. Maximum root concentrations of the most polluting elements present in the bioassay were 3625 mg kg?1 Zn, 2793 mg kg?1 Cu, 13042 mg kg?1 Pb, 49 mg kg?1 Cd and 957 mg kg?1 As. These concentrations represent root bioaccumulation indices of over 1 and usually >2. In contrast, indices of transfer to above-ground phytomass were always < 1, indicating this species is a good candidate for use as a phytostabilizer. However, the high metal concentrations that could reach the above-ground mass of this plant determines a need for close monitoring and avoiding the use of areas under restoration for hunting or grazing.  相似文献   

17.
This paper analyzed the distribution and speciation of seven heavy metals in sediments in Jiaozhou Bay. The ecological risk was assessed using three index approaches (i.e., risk assessment code (RAC), contamination factor (CF), and potential ecological risk index (PERI)) and by a comparison with sediment quality guidelines (Chinese Marine Sediment Quality Standards (CMSQS), and threshold effect level (TEL) and probable effect level (PEL) from the USEPA). Pb, Cr, As, Cu, Zn, and Hg contents at most sites were above the corresponding TEL and Class I criteria (CMSQS) value. Particularly, high contents of Cu, detected at sites S7 (124.5 mg kg?1) and S8 (118.3 mg kg?1), exceeded the respective PEL value, indicating that harmful biological effects might occur. Speciation analysis, individual CF, and RAC calculations suggested that Cd had the highest bioavailable fraction and thus posed a very high risk to aquatic ecosystem; Cu and Zn showed a medium–high risk. Both global CF and PERI analysis indicated a high pollution risk at sites S7, S1, S3, and S2, but the assessments of specific sites were different. The incomplete consistency suggested that it is necessary to consider both total contents and chemical speciation for providing a more realistic appraisal for the risk of heavy metals in sediments.  相似文献   

18.
The aim of this study was to assess EDTA-assisted Pb and Cd phytoextraction potential of locally grown Pelargonium hortorum and Pelargonium zonale. Plants were exposed to different levels of Pb (0–1500?mg kg?1) and Cd (0–150?mg kg?1) in the absence or presence of EDTA (0–5?mmol kg?1). P. hortorum and P. zonale accumulated 50.9% and 42.2% higher amount of Pb in shoots at 1500?mg kg?1 Pb upon addition of 5?mmol kg?1 EDTA. Plant dry biomass decreased 46.8% and 64.3% for P. hortorum and P. zonale, respectively at the combination of 1500?mg kg?1 Pb and 5?mmol kg?1 EDTA. In Cd and EDTA-treated groups, P. hortorum and P. zonale accumulated 2.7 and 1.6-folds more Cd in shoots at 4 and 2?mmol kg?1 EDTA, respectively, in 150?mg Cd kg?1 treatment. Plant dry biomass of P. hortorum and P. zonale was reduced by 46.3% and 71.3%, respectively, in soil having 150?mg Cd kg?1 combined with 5?mmol kg?1 EDTA. Translocation factor and enrichment factor of both plant cultivars at all treatment levels were >1. Overall, the performance of P. hortorum was better than that of P. zonale for EDTA-assisted phytoextraction of Pb and Cd.  相似文献   

19.
Toxicity evaluations of heavy metals against three benthic animals, Tympanotonus fuscatus, Clibanarius africanus and Sesarma huzardi of the Lagos Lagoon were carried out under laboratory conditions. On the basis of the 96hLC50 values, Cd was found to be the most toxic metal tested followed by Cu, Zn and Pb, in a descending order of toxicity against T. fuscatus and S. huzardi; however, against C. africanus, Cu was the most toxic followed by Cd, Zn and Pb (least toxic). The determination of the metal concentrations in the water column and sediment of the Lagos Lagoon revealed that these media of the lagoon contained measurable concentrations of heavy metals but the levels were still several folds lower than the concentrations that will cause 50% mortality of exposed animals under laboratory conditions. The significance of the observed differences between the 96hLC50 values of the test metals, the concentration of heavy metals detected in tissues of field animals and ambient levels of the metals in the Lagos lagoon were discussed in relation to the protection of aquatic lives and potential public health risks. The need to verify the possibilities of synergistic interactions between the constituent metals when acting jointly against the exposed animals was recommended.  相似文献   

20.
This study was conducted to investigate heavy metal contamination in agricultural soils and their transfer in a soil-potato system. A total of 59 pairs of potato and soil samples, representing different locations were collected from Hamedan, western Iran and subjected to heavy metals analysis. Average concentrations of Cd, Cu, Fe, Mn, Ni, Pb, and Zn were 1.2, 13.1, 161.4, 13.2, 3.2, 19.5, and 41.5 mg kg?1 dry weight in potato tubers, respectively. A sequence of decreasing plant transfer factors values: Cd > Pb > Cu > Zn > Ni ≥ Mn > Fe was obtained. Furthermore, the health risk index (HRI) values were within the safe limit (<1) except for Cd and Pb. HRI values for Cd and Pb were higher than 1, indicating potential health risk, especially for children. The results indicated that daily intakes of Cd and Pb in potato in the study area may present a future hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号