首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
目的构建含幽门螺杆菌(H.pylori)热休克蛋白A编码基因的重组载体,并电转入乳酸乳球菌MG1363,表达目的蛋白并分析其免疫原性,为H.pylori基因工程口服疫苗的研究和开发奠定基础。方法以H.py-loriNCTC 11637株基因组DNA为模板,PCR扩增hspA基因,并克隆至乳酸乳球菌表达载体pMG36e中。将重组质粒转化E.coliDH5α,经鉴定的阳性重组质粒命名为pMG36e/hspA。以电穿孔法将pMG36e/hspA转化乳酸乳球菌MG1363并用Western blot检测HspA蛋白的表达。结果克隆重组后得到pMG36e/hspA。将pMG36e/hspA电转化MG1363后,收集菌体蛋白进行Western blot分析,在HspA的相对分子质量(Mr≈13 kDa)处出现特异性条带。结论首次成功构建了表达H.pyloriHspA的重组乳酸乳球菌MG1363,为进一步口服疫苗的相关研究奠定了基础。  相似文献   

3.
为了在乳酸乳球菌中分泌表达具有生物活性的猪IL-18蛋白,并检测其生物活性,故通过分离猪外周血单核淋巴细胞(PBMC),以其为模板,采用RT-PCR方法扩增猪白细胞介素18(pIL-18)基因,将目的基因与乳酸乳球菌表达载体pAMJ399进行连接,并电转化至乳酸乳球菌MG1363中,通过SDS-PAGE和Western blotting分析检测目的蛋白的表达,并通过脾淋巴细胞增殖试验和细胞病变抑制法对pIL-18的生物活性进行检测。Western blotting分析检测结果与生物活性检测结果显示,在重组菌pAMJ399-pIL18/MG1363的上清和菌体沉淀中19 kDa处均出现pIL-18的特异蛋白反应带,且分泌表达的pIL-18蛋白能明显促进猪脾淋巴细胞的增殖,并对病毒增殖有明显的抑制作用。以上结果表明pIL-18可在乳酸乳球菌分泌表达,且表达产物具有良好的生物活性。  相似文献   

4.
5.
Abstract In vivo fusion plasmids identified following conjugative mobilization of pCI301, the 75-kilobase (kb) lactose-proteinase plasmid of Lactococcus lactis subsp. lactis UC317, were characterized. These plasmids (95 kb) were generated from fusion-deletion events involving pCI301 and the 38-kb UC317-derived cryptic plasmid, pCI303. Recombinant plasmids were separable into distinct classes based on their associated phenotypes and restriction maps. The formation of pCI301: : pCI303 composite plasmids within strain UC317 was also demonstrated.  相似文献   

6.
7.
The wide application of lactic acid bacteria in the production of fermented foods depends to a great extent on the unique features of sugar metabolism in these organisms. The relative metabolic simplicity and the availability of genetic tools made Lactococcus lactis the organism of choice to gain insight into metabolic and regulatory networks. In vivo nuclear magnetic resonance has proven a very useful technique to monitor non-invasively the dynamics of intracellular metabolite and co-factor pools following a glucose pulse. Examples of the application of this methodology to identify metabolic bottlenecks and regulatory sites are presented. The use of this information to direct metabolic engineering strategies is illustrated.  相似文献   

8.
乳链菌肽前体基因(nisZ)在乳酸乳球菌中的克隆和表达   总被引:7,自引:1,他引:7  
用PCR技术从克隆有完整乳链菌肽生物合成基因簇(来自于乳链菌肽高产菌株L.lactis AL2)的重组噬菌体λHJ-3中扩增了编码乳链菌肽的前体基因,与pMG36e连接得到重组质粒pHJ201,用电击转化法将pHJ201转化到L.lactis NZ9800中,经活性测定和Tricine-SDS-PAGE电泳证实乳链菌肽前体基因获得了功能表达。DNA序列分析表明乳链菌肽高产菌株L.lactis AL2产生的是NisinZ。发现pHJ201d L.lactis NZ9800 中有良好的稳定性。  相似文献   

9.
10.
11.
Analysis of the sequence of a randomly cloned chromosomal DNA fragment (3.2 kb) from Lactococcus lactis revealed the presence of part of an open reading frame, designated amd1, which specifies a protein displaying significant similarity to aminoacylases from various bacteria. The presence of an immobilised copy of an IS982 element immediately upstream of the coding region of amd1 has probably resulted in the displacement of amd1's native promoter. This genetic organisation was shown to be retained in seven other dairy strains, one of which was only slightly different. The amd1 gene was overexpressed in L. lactis NZ9800 under the control of the inducible nisA promoter and the deacetylating capacity of its gene product was measured on a number of substrates.  相似文献   

12.
The ~93-kDa surface layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a forms a regular crystalline array providing a nanopatterned matrix for the future display of biologically relevant molecules. Lactococcus lactis NZ9000 was established as a safe expression host for the controlled targeted production of SgsE based on the broad host-range plasmid pNZ124Sph, into which the nisA promoter was introduced. SgsE devoid of its signal peptide-encoding sequence was cloned into the new vector and purified from the cytoplasm at a yield of 220 mg l- of expression culture. Secretion constructs were based on the signal peptide of the Lactobacillus brevis SlpA protein or the L. lactis Usp45 protein, allowing isolation of 95 mg of secreted rSgsE l-1. N-terminal sequencing confirmed correct processing of SgsE in L. lactis NZ9000. The ability of rSgsE to self-assemble in suspension and to recrystallize on solid supports was demonstrated by electron and atomic force microscopy.  相似文献   

13.
Abstract The relative immunogenicity of tetanus toxin fragment C (TTFC) has been determined in three different strains of inbred mice when expressed in Lactococcus lactis as a membrane-anchored protein (strain UCP1054), as an intracellular protein (strain UCP1050), or as a secreted protein which is partly retained within the cell wall (strain UCP1052). Protection against toxin challenge (20 × LD50) could be obtained without the induction of anti-lactococcal antibodies. When compared in terms of the dose of expressed tetanus toxin fragment C required to elicit protection against lethal challenge the membrane-anchored form was significantly (10–20 fold) more immunogenic than the alternative forms of the protein.  相似文献   

14.
AIMS: The aim of this study was to obtain new Lactococcus lactis strains from nondairy materials for use as milk fermentation starters. The genetic and phenotypic traits of the obtained strains were characterized and compared with those of L. lactis strains derived from milk. It was confirmed that the plant-derived bacteria could be used as milk fermentation starters. METHODS AND RESULTS: About 2600 lactic acid bacteria were subjected to screening for L. lactis with species-specific PCR. Specific DNA amplification was observed in 106 isolates. Forty-one strains were selected, including 30 strains of milk-derived and 11 of plant-derived, and their phenotypic traits and genetic profiles were determined. The plant-derived strains showed tolerance for high salt concentration and high pH value, and fermented many more kinds of carbohydrates than the milk-derived strains. There were no remarkable differences in the profiles of enzymes, such as lipases, peptidases and phosphatases. Isolates were investigated by cluster analysis based on randomly amplified polymorphic DNA profiles. There were no significant differences between isolates from milk and those from plant. The L. lactis subsp. cremoris strains were clustered into two distinct groups, one composed of the strains having the typical cremoris phenotype and the other composed of strains having a phenotype similar to subsp. lactis. Fermented milk manufactured using the plant-derived strains were not inferior in flavour to that manufactured using the milk-derived strains. CONCLUSIONS: Plant-derived L. lactis strains are genetically close to milk-derived strains but have various additional capabilities, such as the ability to ferment many additional kinds of carbohydrates and greater stress-tolerance compared with the milk-derived strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The lactic acid bacteria obtained from plants in this study may be applicable for use in the dairy product industry.  相似文献   

15.
16.
为确定本实验室研究构建的表达猪传染性胃肠炎病毒S蛋白重组乳酸乳球菌pNZ8112-Sa/NZ9000在模拟动物肠道内稳定性,对重组菌株的培养条件、蛋白表达和质粒携带以及在模拟胃肠道环境中的稳定性进行了检测。实验结果表明能够保持其蛋白表达的稳定性及重组质粒的稳定性;模拟胃肠道环境实验结果表明重组菌能够耐受胰蛋白酶溶液、0.1%的胆汁及在含有胃蛋白酶pH 1.5的盐酸存活1 h和在pH 2.5的盐酸耐受性良好。  相似文献   

17.
A novel bacteriocin, lacticin Z, produced by Lactococcus lactis QU 14 isolated from a horse’s intestinal tract was identified. Lacticin Z was purified through a three step procedure comprised of hydrophobic-interaction, cation-exchange chromatography, and reverse-phase HPLC. ESI-TOF MS determined the molecular mass of lacticin Z to be 5,968.9 Da. The primary structure of lacticin Z was found to consist of 53 amino acid residues without any leader sequence or signal peptide. Lacticin Z showed homology to lacticin Q from L. lactis QU 5, aureocin A53 from Staphylococcus aureus A53, and mutacin BHT-B from Streptococcus rattus strain BHT. It exhibited a nanomolar range of MICs against various Gram-positive bacteria, and the activity was completely stable up to 100 °C. Unlike many of other LAB bacteriocins, the stability of lacticin Z was emphasized under alkaline conditions rather than acidic conditions. All the results indicated that lacticin Z belongs to a novel type of bacteriocin.  相似文献   

18.
The presence and the nucleotide sequence of four multidrug resistance genes, lmrA, lmrP, lmrC, and lmrD, were investigated in 13 strains of Lactococcus lactis ssp. lactis, four strains of Lactococcus lactis ssp. cremoris, two strains of Lactococcus plantarum, and two strains of Lactococcus raffinolactis. Multidrug resistance genes were present in all L. lactis isolates tested. However, none of them could be detected in the strains belonging to the species L. raffinolactis and L. plantarum, suggesting a different set of multidrug resistance genes in these species. The analysis of the four deduced amino acid sequences established two different variants depending on the subspecies of L. lactis. Either lmrA, or lmrP, or both were found naturally disrupted in five strains, while full-length lmrD was present in all strains.  相似文献   

19.
The X-prolyl dipeptidyl aminopeptidase PepX, a serine peptidase isolated originally from Lactococcus lactis subsp lactis NCDO 763, was cloned and overproduced in Escherichia coli. The enzyme was isolated in its active form in two purification steps. Crystals of PepX were grown by the hanging drop vapor diffusion method using polyethyleneglycol 4000 as precipitant at pH 5.0. The crystals are orthorhombic with cell dimensions a = 92.8 Å, b = 102.6 Å, and c = 101.6 Å, space group P21212, and probably contain one monomer of 87.5 kDa in the asymmetric unit. The crystals, very stable under X-rays, diffract to at least 2.2 Å and are suitable for high-resolution structural analysis. © 1995 Wiley-Liss, Inc.  相似文献   

20.
pJW566是从丹麦乳酪生产菌株Lactococcus lactis subsp.cremoris W56中分离到的,一个22.4kb,具有限制和修饰作用的质粒,内切酶ClaⅠ和pJW566不完全消化,所得片段与来自于质粒pVC5的氯霉素抗性基因连接得到一个携带有完整限制和修饰酶基因的质粒pJK1。基因亚克隆分析发现该基因位于约5kb的Sph0Ⅰ-Hin dⅢDNA片段上。序列分析表明该片段包含一个4572bp的开放阅读框架、编码一个由1576/1584个氨基酸残基组成的蛋白质,该基因命名为Lla BⅢ。蛋白质同源性查询发现在该蛋白的N-末端有7个保守区域,与R/M系统Ⅰ型和Ⅲ型内切酶有较高同源性,在蛋白的中间区域有4个代表N^6-腺苷酰甲基转移酶的特征序列,而蛋白的C-末端不同于任何已知蛋白。这种具有限制、修饰和可能的DNA识别作用的多功能蛋白,可能是一新的R/M系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号