首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
牛呼吸道合胞体病毒G蛋白的截短表达与鉴定   总被引:2,自引:0,他引:2  
经生物学软件DNA Star分析,将牛呼吸道合胞体病毒G基因截短成2个片段G1和G2。然后用人工合成的牛呼吸道合胞体病毒G基因为模板,用PCR分别扩增G1和G2基因片段,其大小分别为570 bp和308 bp。将目的片段定向克隆到pET30a表达载体中,酶切及测序鉴定均正确后,转化BL21表达菌,经IPTG诱导后G1和G2基因片段都获得了表达,且都为可溶性表达。用Ni柱亲和层析法在非变性条件下纯化重组蛋白,经免疫印迹试验鉴定证明纯化的重组蛋白G1具有良好的抗原性和特异性,而重组蛋白G2无反应性。应用纯化的重组蛋白G1进行的间接ELISA与免疫印迹试验在国内牛血清中检测到了BRSV血清抗体。本研究所表达的重组蛋白G1为基于牛呼吸道合胞体病毒G蛋白的血清学诊断方法的建立与牛呼吸道合胞体病毒G蛋白生物学功能的研究奠定了基础。  相似文献   

2.
We studied the evolution of the G gene in the new genotype ON1 of RSV detected from patients with acute respiratory infection in Japan. Phylogenetic analyses and the evolutionary timescale were obtained by the Bayesian MCMC method. We also analyzed p‐distance and positive selection sites. A new genotype ON1 emerged around 2001. The evolution rate was rapid (3.57 × 10?3 substitutions/site per year). The p‐distance was short and no positive selection site was found in the present strains. These results suggested that a new genotype ON1 of RSV‐A emerged approximately10 years ago and spread to some countries with a high evolution rate.
  相似文献   

3.
The attachment protein or G protein of the A2 strain of human respiratory syncytial virus (RSV) was digested with trypsin and the resultant peptides separated by reverse-phase high-performance liquid chromatography (HPLC). One tryptic peptide produced a mass by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) corresponding to residues 152-187 with the four Cys residues of the ectodomain (residues 173, 176, 182, and 186) in disulfide linkage and absence of glycosylation. Sub-digestion of this tryptic peptide with pepsin and thermolysin produced peptides consistent with disulfide bonds between Cys173 and Cys186 and between Cys176 and Cys182. Analysis of ions produced by post-source decay of a peptic peptide during MALDI-TOF-MS revealed fragmentation of peptide bonds with minimal fission of an inter-chain disulfide bond. Ions produced by this unprecedented MALDI-induced post-source fragmentation corroborated the existence of the disulfide arrangement deduced from mass analysis of proteolysis products. These findings indicate that the ectodomain of the G protein has a non-glycosylated subdomain containing a "cystine noose."  相似文献   

4.
【目的】构建可表达增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)报告基因的人呼吸道合胞病毒(human respiratory syncytial virus,RSV)双顺反子微型基因组cDNA克隆及重组质粒,并进行拯救,以探讨并验证RSV的聚合酶蛋白或辅助蛋白在RSV反向遗传学操作中的作用。【方法】利用全基因合成和分子生物学相结合的方法,在获得可分别表达EGFP和无生物活性蛋白的单顺反子微型基因组质粒pUC57-RSV-EGFP和pUC57-RSV-ORF1的基础上,进一步克隆至pBR322B载体,获得编码EGFP及无生物活性蛋白的双顺反子微型基因组质粒,经限制性内切酶和核酸序列分析正确后,与可表达4种辅助蛋白的辅助质粒共转染至BHK-T7细胞,通过荧光显微镜观察EGFP的表达以及RT-qPCR对EGFP mRNA的转录水平进行定量分析。【结果】成功构建了编码EGFP和无生物活性蛋白的RSV双顺反子微型基因组质粒pBR322B-RSVⅡ-EGFP,经与编码4种辅助蛋白的辅助质粒共转染至BHK-T7细胞,发现4种辅助蛋白对EGFP的表达具有不同的功能活性。【结论】以可表达EGFP报告基因的RSV双顺反子微型基因组重组质粒,实现了对4种辅助蛋白的功能验证,其中M2-1蛋白在双顺反子微型基因组拯救过程中具有转录延长的生物学活性。  相似文献   

5.
构建可表达A亚型人呼吸道合胞病毒(human respiratory syncytialvirus,RSV)融合蛋白(fusion protein,F)的辅助病毒依赖型腺病毒载体(helper-dependent adenoviral vector,HDAd),并完成大量制备、纯化和F蛋白的体外表达鉴定。将带有CMV启动子序列的F基因亚克隆至克隆载体pSC11,鉴定正确后,克隆至HDAd质粒pSC15B,构建pSC15B/F HDAd重组质粒,PmeⅠ消化pSC15B/F去除原核复制元件及抗性基因,获得HDAd/F DNA分子,经磷酸钙共沉淀法转染293Cre4细胞,16h后感染辅助病毒,收获HDAd/F载体粗提液,随后以HDAd/F粗提液及辅助病毒连续共感染293Cre4细胞直至HDAd/F达到复制极限,同时以可表达β-半乳糖苷酶(β-galactosidase,LacZ)报告基因的HDAdLacZ载体作为平行对照监测载体复制过程。与辅助病毒共感染293Cre4细胞进一步扩增HDAd/F、CsCl梯度法超速离心制备大量纯化的HDAd/F载体,体外感染293细胞,RT-PCR检测到F基因有转录,Western blot分析表明F蛋白有特异性表达。总之,成功构建HDAd/F载体并在真核细胞中实现表达,为体内免疫学效力试验奠定基础,为研制RSV疫苗提供了一种新方法。  相似文献   

6.
呼吸道合胞病毒(respiratory syncytial virus,RSV)感染,是造成婴幼儿、学龄前儿童、免疫缺陷患者、老年人等高危群体住院治疗及死亡的重要病因。目前,多个预防RSV感染的候选疫苗正处于研发中,尚无安全、有效的疫苗面世。对RSV感染的处理仍以治疗为主,使用帕利珠单抗(Palivizumab)是当前仅有的预防药物。在过去数年间出现的新型抗体药物,如多克隆抗体、单克隆抗体、纳米抗体等有些已进入了临床前或I、II、III期临床试验阶段。融合蛋白(fusion protein,F蛋白)在RSV感染过程中是不可或缺的,它介导病毒包膜与宿主细胞膜的融合。在感染过程中,F蛋白从亚稳态的融合前构象状态(prefusion fusion protein,pre F)转变为热力学稳定的融合后状态(postfusion fusionprotein,post F)。近年来,研究人员通过不断筛选,获得了多株针对pre F的抗体。与结合post F的抗体相比,这些抗体具有更强的RSV中和活性。一些更新的抗体药物候选品,在实验中显示出了效力强、药代动力学特征明显、半衰期长等特点,并能以其他途径给药,而且能降低其制备成本。现就抗RSV pre F的抗体研究进展作一概述。  相似文献   

7.
A conserved fragment comprising amino acid residues 130-230 of the G glycoprotein of human respiratory syncytial virus subtype A was expressed in the commensal bacterium Streptococcus gordonii. Recombinant streptococci displaying the G domain at the cell surface were used to immunize mice via both parenteral and mucosal routes. Subcutaneous immunization induced respiratory syncytial virus-specific serum immunoglobin G (IgG) capable of partially controlling virus replication in the lungs. Intranasal immunization with live bacteria stimulated the production of IgA against both the whole virus and the G domain in serum and bronchoalveolar fluid. Upon challenge, immunized animals had significantly lower virus titres in the lungs than the controls. Our results show for the first time that the G domain-expressing S. gordonii strain elicits both systemic and mucosal immunity that reduced respiratory syncytial virus replication in the lungs of mice.  相似文献   

8.
目的克隆并表达人呼吸道合胞病毒(Human respiratory syncytial virus,HRSV)兰州株的融合蛋白(F)基因片段。方法利用PCR技术扩增HRSV兰州株的融合蛋白基因片段,克隆于原核表达载体pET-42b(+),转化大肠杆菌(Rosetta),经IPTG诱导表达,镍离子亲和层析柱纯化,SDS-PAGE和Western-blot分析重组蛋白的表达及其反应原性。结果 PCR扩增得到951 bp的DNA片段,重组质粒pET42b-F经酶切鉴定和测序分析,表明质粒构建正确。表达的重组蛋白的相对分子质量为68 710,表达的重组蛋白占总菌体蛋白的7%,纯化后蛋白纯度达80%。经Western-blot分析,重组蛋白与抗RSV的单抗呈专一性强阳性反应。结论成功构建了HRSV兰州株F基因片段原核表达载体,并在大肠杆菌Rosetta中获得了表达,表达的重组蛋白具有反应原性和特异性,为HRSV感染引起的疾病血清学诊断以及试剂盒的研发提供了材料。  相似文献   

9.
目的构建呼吸道合胞病毒融合蛋白F1和截短F1蛋白的原核表达载体,并对它们在大肠杆菌中的表达差异进行了初步研究。方法用DNAstar软件对呼吸道合胞病毒F1蛋白进行亲疏水性和抗原表位可能性分析后,将其两端的疏水区域截去之后与pET-42b(+)构建表达载体,同时用相同的表达系统构建F1蛋白的表达载体并将2种重组蛋白进行诱导表达。实验对2种蛋白在Rossata/pET-42b(+)菌株中的表达难易度、表达形式及初步洗涤的包涵体纯度进行了比较。结果与F1蛋白相比,截短的F1蛋白相对更容易表达,表达的可溶性蛋白含量更高,洗涤纯化后的包涵体纯度也更高。结论呼吸道合胞病毒F1蛋白截去两端疏水氨基酸后更容易表达,为后期蛋白的大量制备及其免疫原性研究奠定了基础。  相似文献   

10.
RSV (respiratory syncytial virus)-induced pneumonia and bronchiolitis may be associated with hyperresponsive conditions, including asthma. Eosinophilic proteins such as MBP (major basic protein) may also be associated with the pathophysiology of asthma. To elucidate the roles of RSV infection and MBP in the pathogenesis of pneumonia with hyperresponsiveness, we investigated the effects of RSV infection and MBP on A549 (alveolar epithelial) cells. CPE (cytopathic effects) in A549 cells were observed by microscopy. Apoptosis and cell death was evaluated by flow cytometric analysis and modified MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. We also measured 15 types of cytokines and chemokines in A549 cell supernatants. Although RSV alone did not affect the CPE of A549, high concentrations of MBP resulted in cell death within 24 h. Combinations of RSV and MBP synergistically induced cell death. In A549 cells infected with RSV alone, the release of GM-CSF (granulocyte-macrophage colony-stimulating factor) was significantly enhanced compared with control cells (no infection). In the cells treated with MBP alone, the production of IL (interleukin)-2, 4, 5, 7, 10, 12, 13, 17, IFN (interferon)-γ, GM-CSF, G-CSF (granulocyte colony-stimulating factor) and MIP (macrophage inflammatory protein)-1β was significantly increased compared with control cells. Notably, the levels of GM-CSF and IL-17 in RSV/MBP-treated cells were significantly higher than those treated with MBP alone. These results suggest that MBP synergistically enhanced the release of various cytokines/chemokines and the cell death of RSV-infected A549 cells, indicating that MBP may be closely associated with the pathophysiology of allergic reactions in bronchiolitis/pneumonia due to RSV.  相似文献   

11.
Human metapneumovirus (hMPV) is one of the etiological agents of acute respiratory tract infections. From June 2005 to May 2006, we collected 185 clinical specimens from children in Osaka City, Japan, and detected 41 hMPV RNA. Of the 41 specimens, four (9.8%) also contained other viruses (3 with adenovirus [AdV] and 1 with respiratory syncytial virus [RSV]). The clinical symptoms of patients coinfected with AdV were indistinct from those of patients mono-infected with hMPV. The symptoms of the one patient co-infected with RSV were clinically severe. Further research is needed to clarify the effect of hMPV on other respiratory viruses or vice versa.  相似文献   

12.
13.
Heptad repeat regions (HR1 and HR2) are highly conserved peptides located in F(1) of paramyxovirus envelope proteins. They are important in the process of virus fusion and form six-helix bundle structure (trimer of HR1 and HR2 heterodimer) post-fusion, similar to those found in the fusion proteins of other enveloped viruses, such as retrovirus HIV. Both HR1 and HR2 show potent inhibition for virus fusion in some members of paramyxovirus. However, in other members, only HR2 gives strong inhibition whereas HR1 does not. Human respiratory syncytial virus (hRSV) is a member of paramyxovirus and its crystal structure of HR1 and HR2 six-helix bundle was solved lately. Although hRSV HR2 inhibition was reported, nevertheless the effect of HR1 on virus fusion is not known. In this study, hRSV HR1 and HR2 were expressed as fusion protein separately in Escherichia coli system and their complex assembly and virus fusion inhibition effect have been analysed. It shows that both HR1 and HR2 (in the fusion form with 50-amino-acid fusion partner) of hRSV F protein give strong inhibition on virus fusion (IC(50) values are 1.68 and 2.93 microM, respectively) and they form stable six-helix bundle in vitro with both in the fusion protein form.  相似文献   

14.
呼吸道合胞病毒感染与细胞凋亡、自噬的关系错综复杂。研究发现呼吸道合胞病毒感染细胞后,既能产生促细胞凋亡作用,也能产生抗细胞凋亡作用,还能诱导细胞发生自噬。研究这些过程机理,能帮助我们更好地认识呼吸道合胞病毒感染发病机制,为预防和治疗呼吸道合胞病毒感染提供一些新的方向。  相似文献   

15.
Human respiratory syncytial virus (HRSV) is the leading cause of lower respiratory tract disease in infants. The HRSV small hydrophobic (SH) protein plays an important role in HRSV pathogenesis, although its mode of action is unclear. Analysis of the ability of SH protein to induce membrane permeability and form homo-oligomers suggests it acts as a viroporin. For the first time, we directly observed functional SH protein using electron microscopy, which revealed SH forms multimeric ring-like objects with a prominent central stained region. Based on current and existing functional data, we propose this region represents the channel that mediates membrane permeability.

Structured summary

MINT-7890792, MINT-7890805: SH (uniprotkb:P04852) and SH (uniprotkb:P04852) bind (MI:0407) by chromatography technology (MI:0091)MINT-7890784, MINT-7890776: SH (uniprotkb:P04852) and SH (uniprotkb:P04852) bind (MI:0407) by electron microscopy (MI:0040)  相似文献   

16.
Respiratory syncytial virus (RSV) is a common cause of respiratory infections in infants. Effective vaccines are currently being sought, but no vaccine is thus far available. In our previous study, recombinant AIK‐C measles vaccine expressing the RSV fusion protein (MVAIK/RSV/F) was developed and protective immunity against RSV demonstrated in cotton rats. In the present study, the immunogenicity and protective effects were investigated in three cynomolgus monkeys immunized with MVAIK/RSV/F. Neutralizing test antibodies against RSV were detected and no infectious virus was recovered from the lungs of monkeys immunized with MVAIK/RSV/F after challenge. MVAIK/RSV/F has the potential to inhibit RSV infection.
  相似文献   

17.
18.
Respiratory syncytial virus (RSV) is one of the most important pathogens of infancy and early childhood. Here a fruit-based edible subunit vaccine against RSV was developed by expressing the RSV fusion (F) protein gene in transgenic tomato plants. The F-gene was expressed in ripening tomato fruit under the control of the fruit-specific E8 promoter. Oral immunization of mice with ripe transgenic tomato fruits led to the induction of both serum and mucosal RSV-F specific antibodies. The ratio of immunoglobulin subclasses produced in response to immunization suggested that a type 1 T-helper cell immune response was preferentially induced. Serum antibodies showed an increased titer when the immunized mice were exposed to inactivated RSV antigen.  相似文献   

19.
Respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants. Reduced numbers of NK cells have been reported in infants with severe RSV infection; however, the precise role of NK cells during acute RSV infection is unclear. In this study the NK and T cell phenotypes, LILRB1 gene polymorphisms and KIR genotypes of infants hospitalized with RSV infection were analyzed. Compared to controls, infants with acute RSV infection showed a higher proportion of LILRB1+ T cells; in addition, a subgroup of infants with RSV infection showed an increase in LILRB1+ NK cells. No differences in NKG2C, NKG2A, or CD161 expression between RSV infected infants and controls were observed. LILRB1 genotype distribution of the rs3760860 A>G, and rs3760861 A>G single nucleotide polymorphisms differed between infants with RSV infection and healthy donors, whereas no differences in any of the KIR genes were observed. Our results suggest that LILRB1 participates in the pathogenesis of RSV infection. Further studies are needed to define the role of LILRB1+ NK in response to RSV and to confirm an association between LILRB1 polymorphisms and the risk of severe RSV infection.  相似文献   

20.
[目的]以减毒鼠伤寒沙门菌(Salmonella typhimurium aroA strain SL7207,SL7207)为载体携带可表达呼吸道合胞病毒(Human respiratory syncytial vrius,RSV)密码子优化的融合蛋白(Fusion glycoprotein,F)的真核表达质粒,探讨不同黏膜免疫途径及密码子优化对免疫效果的影响.[方法]通过对RSV野生型F基因(Fwt)进行密码子优化,获得密码子优化的F基因(Fsyn),并构建可表达Fsyn的真核表达质粒pcDNA3.1/Fsyn,转化SL7207得到SL7207/pcDNA3.1/Fsyn.分别经滴鼻和灌胃途径,免疫BALB/c小鼠,采用间接ELISA方法比较免疫效果.[结果]与灌胃组相比,滴鼻组诱导小鼠产生了更高水平的血清IgG和黏膜SIgA,获得了更好的免疫效果(P<0.05).与野生型相比,密码子优化的F蛋白具有更好的免疫原性(P<0.05).[结论]经滴鼻途径免疫和密码子优化能够提高以SL7207为载体的RSV DNA疫苗免疫效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号