共查询到20条相似文献,搜索用时 0 毫秒
1.
G. Kishan P. Gopalakannan C. Muthukumaran K. Thirumalai Muthukumaresan M. Dharmendira Kumar K. Tamilarasan 《Journal of Genetic Engineering and Biotechnology》2013,11(2):111-116
Statistical optimization is an effective technique for the investigation of complex processes with minimal number of experimental runs. In this study, statistical approach was used to study the optimization of media components for lipase production from Yarrowia lipolytica MTCC 35. Mahua cake, glucose, MnCl2 and KH2PO4 were screened to be the most significant variables among the nine medium variables that were tested to determine influence on lipase production by Plackett–Burman design. Central Composite Design was used for further optimization of these screened variables for enhanced lipase production. The determination coefficient (R2) value of 0.922 showed that the regression models adequately explain the data variation and represent the actual relationships between the variables and response. The optimum values of investigated variables for the maximum lipase production were 6.0% Mahua cake, 2.0% glucose, 0.2% MnCl2 and 0.2% KH2PO4. The maximum lipase production (9.40 U mL?1) was obtained under optimal condition. 相似文献
2.
Organisms without a sequenced genome and lacking a complete protein database encounter an added level of complexity to protein identification and quantitation. De novo sequencing, new bioinformatics tools, and mass spectrometry (MS) techniques allow for advances in this area. Here, the proteomic characterization of an unsequenced psychrophilic bacterium, Pedobacter cryoconitis, is presented employing a novel workflow based on (15) N metabolic labelling, 2DE, MS/MS, and bioinformatics tools. Two bioinformatics pipelines, based on nitrogen constraint (N-constraint), ortholog searching, and de novo peptide sequencing with N-constraint similarity database search, are compared based on proteome coverage and throughput. Results demonstrate the effect of different growth temperatures (1°C, 20°C) and different carbon sources (glucose, maltose) on the proteome. Seventy-six and 69 proteins were identified and validated from the glucose- and maltose-grown bacterium, respectively, from which 21 and 22 were differentially expressed at different growth temperatures. Differentially expressed proteins are involved in stress response and carbohydrate metabolism, with higher expression at 20°C than at 1°C, while antioxidants were upregulated at 1°C. This study provides an alternative workflow to identify, validate, and quantify proteins from unsequenced organisms distantly related to other species in the protein database. Furthermore, it provides further understanding on bacterial adaptation mechanisms to cold environments, and a comparative proteomic analyses with other psychrophilic microorganisms. 相似文献
3.
Application of Plackett-Burman design and response surface methodology to achieve exponential growth for aggregated shipworm bacterium 总被引:7,自引:0,他引:7
Here we report the successful implementation of the Plackett-Burman multifactorial design to screen the limiting components for growth and subsequent use of the response surface methodology (RSM) to design a medium that supported exponential growth of the aggregated morphology of the shipworm bacterium, Teredinobacter turnirae. The results obtained with the help of Plackett-Burman design indicated limitations of three components in the growth medium, MnCl2.4H2O, Na2CO3, and K2HPO4. The concentrations of these three components were further optimized using RSM. By increasing the concentrations of the above-mentioned components by 4-fold, 12-fold, and 12-fold, respectively, it became possible to achieve exponential growth of the culture. 相似文献
4.
Aim: Lactobacillus fermentum is a widely utilized probiotic compound fed as an alternative to antibiotics for growth promotion in a wide variety of livestock species. The objective of this research is to develop an economical and practical fermentation medium for the growth of Lact. fermentum using response surface methodology. Methods and Results: A two‐level Plackett–Burman design was used to determine which factors in the fermentation medium influence the growth of Lact. fermentum. Under our experimental conditions, peptone, urea and yeast extract were found to be major factors. Then, the steepest ascent method and the central composite design were applied to optimize the culture of Lact. fermentum. The following composition of the fermentation medium was estimated to be the most economical formula (per litre): 30 g corn syrup, 15 g glucose, 14·4 g peptone, 7 g (NH4)2SO4, 0·5 g urea, 3 g sodium acetate, 4 g sodium citrate, 0·1 g MnSO4·4H2O, 0·5 g MgSO4·7H2O, 7·3 g yeast extract, 0·5 g K2HPO4. Conclusion: Based on 10 side‐by‐side comparisons, we found that the yield of Lact. fermentum using our fermentation medium was 64% greater than those using modified de Man, Rogosa and Sharp broth (MRS) medium (1·8 × 109 CFU ml?1vs 1·1 × 109 CFU ml?1, respectively), while the cost was 89% lower than MRS. This research indicates that it is possible to increase bacterial yield by using inexpensive materials. Significance and Impact of the Study: It is more likely that the use of Lact. fermentum as a probiotic will increase. The low cost medium developed in this research can be used for large‐scale, commercial application where economics are quite likely to be important. 相似文献
5.
Alkaline pectin lyase finds applications in the degumming and retting of plant fibres, textile industry and pectic wastewater treatment where it degrades highly methylesterified pectin without prior action of any other pectinase. Response surface methodology (RSM) has been frequently utilized for the optimization of production process of industrially important enzymes from microbes. In the present work, fermentation conditions for the production of pectin lyase from Bacillus cereus were optimized using the factorial and central composite design of RSM. The cubic order polynomial regression model was found to be adequate and significant with a determination coefficient R2 of 0.9505 (p?.0001). The ANOVA analysis and three-dimensional surface plots confirmed interaction among variables. The optimum values of variables were found to be pectin 4% (w/v), sodium carbonate 1% (w/v), manganese sulphate 0.055% (w/v) and magnesium sulphate 0.018% (w/v) at 150?rpm under response surface curves. After optimization using RSM, the experimental value of maximum activity of enzyme (3.37?U/ml) was found higher but close to the predicted value (2.68?U/ml) and the enzyme activity increased by 1.32-fold against activity of 1.43?U/ml using manual optimization. 相似文献
6.
Development of a serum-free medium for the production of humanized antibody from chinese hamster ovary cells using a statistical design 总被引:1,自引:0,他引:1
Eun Jung Kim No Soo Kim Gyun Min Lee 《In vitro cellular & developmental biology. Animal》1998,34(10):757-761
Summary To develop serum-free (SF) media for the production of humanized antibody from recombinant Chinese hamster ovary (rCHO) cells,
a statistical optimization approach based on a Plackett-Burman design was adopted. A basal medium was prepared by supplementing
α-minimal essential medium (α-MEM) with Fe(NO3)3·9H2O, CuCl2, ZnSO4·7H2O, and Na2SeO3 which are generally contained in SF medium formulations. Insulin, transferrin, and ethanolamine were also supplemented to
the basal medium to determine their optimal concentrations. From this statistical analysis, serine, phenylalanine, and tyrosine
were identified as important determinants for cell growth. Also, putrescine, linoleic acid, and hydrocortisone were shown
to be important for both cell growth and antibody production. The SF medium was formulated by supplementing the basal medium
with components showing positive effects on cell growth and/or antibody production. Cell growth and antibody production in
this SF medium were comparable to those in α-MEM supplemented with 5% dialyzed fetal bovine serum. Taken together, the results
obtained here show that a Plackett-Burman design facilitates the development of SF media for rCHO cells aimed at producing
a humanized antibody. 相似文献
7.
The production of cellulase by Bacillus subtilis MU S1, a strain isolated from Eravikulam National Park, was optimized using one-factor-at-a-time (OFAT) and statistical methods. Physical parameters like incubation temperature and agitation speed were optimized using OFAT and found to be 40?°C and 150?rpm, respectively, whereas, medium was optimized by statistical tools. Plackett-Burman design (PBD) was employed to screen the significant variables that highly influence cellulase production. The design showed carboxymethyl cellulose (CMC), yeast extract, NaCl, pH, MgSO4 and NaNO3 as the most significant components that affect cellulase production. Among these CMC, yeast extract, NaCl and pH showed positive effect whereas MgSO4 and NaNO3 were found to be significant at their lower levels. The optimum levels of the components that positively affect enzyme production were determined using response surface methodology (RSM) based on central composite design (CCD). Three factors namely CMC, yeast extract and NaCl were studied at five levels whilst pH of the medium was kept constant at 7. The optimal levels of the components were CMC (13.46?g/l), yeast extract (8.38?g/l) and NaCl (6.31?g/l) at pH 7. The maximum cellulase activity in optimized medium was 566.66?U/ml which was close to the predicted activity of 541.05?U/ml. Optimization of physical parameters and medium components showed an overall 3.2-fold increase in activity compared to unoptimized condition (179.06?U/ml). 相似文献
8.
A central composite rotatable design was used to examine the effects of five components of the medium on the growth of Haematococcus
pluvialis in batch culture. The medium components considered were: sodium acetate,potassium nitrate, major elements, trace
elements and vitamins. Within the range of the concentrations tested, a moderate concentration of the major elements significantly
enhanced algal growth, both in terms of specific growth rate and cell dry weight, whereas the vitamins had no significant
effect. Based on the response surface contour plots and the results of numerical analyses, the optimal nutrient concentrations
for growth in terms of specific growth rate were 0.51 g L-1 sodium acetate, 0.25 g L-1 potassium nitrate, 0.63 mL L-1 of the major element stock solution and 0.2 mL L-1 of the trace element stock solution. The optimal nutrient concentrations for biomass production were 1.64 g L-1 sodium acetate, 0.37 g L-1potassium nitrate, 2.52 mL L-1 of the major element stock solution and 0.03 mL L-1 of the trace element stock solution.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
9.
Chitosan is a biopolymer obtained by deacetylation of chitin and has been proven to have various applications in industry and biomedicine. Deacetylation of chitin using the enzyme chitin deacetylase (CDA) is favorable in comparison to the hazardous chemical method involving strong alkali and high temperature. A fungal strain producing CDA was isolated from environmental samples collected from coastal regions of South Kerala, India. It was identified as Aspergillus flavus by morphological characteristics and ITS DNA analysis. Nutritional requirement for maximum production of CDA under submerged condition was optimized using statistical methods including Plackett–Burman and response surface methodology central composite design. A 5.98-fold enhancement in CDA production was attained in shake flasks when the fermentation process parameters were used at their optimum levels. The highest CDA activity was 57.69 ± 1.68 U under optimized bioprocess conditions that included 30 g L?1 glucose, 40 g L?1 yeast extract, 15 g L?1 peptone, and 7 g L?1 MgCl2 at initial media pH of 7 and incubation temperature of 32°C after 48 hr of incubation, while the unoptimized basal medium yielded 9.64 ± 2.04 U. 相似文献
10.
Two statistical tools, Plackett-Burman design (PBD) and Box-Behnken design (BBD) were used to optimize the mycelia growth of Schizophyllum commune with different nutrient components. Results showed that 32.92 g/L of biomass were produced using a medium consisting of 18.74 g/L yeast extract, 38.65 g/L glucose, and 0.59 g/L MgSO(4).7H(2)O. The experimental data fitted well with the model predicted values within 0.09 to 0.77% error. The biomass was also tested for antifungal activity against wood degrading fungi of rubberwood. Results showed that the minimum inhibitory concentration (MIC) values for antifungal activity range from 0.16 to 5.00 μg/μL. The GC-MS analysis indicated that this fungus produced several compounds, such as glycerin, 2(3H)-furanone, 5-heptyldihydro-, 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-, and triacetin. 相似文献
11.
Stepwise screening of media supplements using factorial design and analysis was employed in the development of serum-free medium for a recombinant Chinese hamster ovary cell line. The effects (growth and target protein production) of different combinations were measured at two time points to ensure adequate response. The results were analysed by a computer program specialized in factorial analysis. The formulation deduced from the previous experiment was used as the new basal medium for the next screening. Certain significant nutrients were studied again in a more advanced formulation in order to analyse the potential synergistic effects with new media components. Compared to cells grown in serum-containing medium, cells adapted to the final formulation of the serum-free medium had a comparable growth rate but a four fold increase in the active protein production.Abbreviations ANOVA
Analysis of variance
- BSA
bovine serum albumin
- CHO
Chinese hamster ovary
- FBS
fetal bovine serum
- MTT
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
- PBS
phosphate buffered saline
- SFM
serum-free medium 相似文献
12.
Héla Mezghanni Saoussen Ben Khedher Slim Tounsi 《Preparative biochemistry & biotechnology》2013,43(3):267-278
In order to overproduce biofungicides agents by Bacillus amyloliquefaciens BLB371, a suitable culture medium was optimized using response surface methodology. Plackett–Burman design and central composite design were employed for experimental design and analysis of the results. Peptone, sucrose, and yeast extract were found to significantly influence antifungal activity production and their optimal concentrations were, respectively, 20 g/L, 25 g/L, and 4.5 g/L. The corresponding biofungicide production was 250 AU/mL, corresponding to 56% improvement in antifungal components production over a previously used medium (160 AU/mL). Moreover, our results indicated that a deficiency of the minerals CuSO4, FeCl3 · 6H2O, Na2MoO4, KI, ZnSO4 · 7H2O, H3BO3, and C6H8O7 in the optimized culture medium was not crucial for biofungicides production by Bacillus amyloliquefaciens BLB371, which is interesting from a practical point of view, particularly for low-cost production and use of the biofungicide for the control of agricultural fungal pests. 相似文献
13.
P.L. Pham P. Taillandier M. Delmas P. Strehaiano 《World journal of microbiology & biotechnology》1998,14(2):185-190
The concentrations of oat spelt xylan, casein hydrolysate and NH4Cl in the culture medium for production of xylanase from Bacillus sp. I-1018 were optimized by means of response surface methods. The path of steepest ascent was used to approach the optimal region of the medium composition. The optimum composition of the nutrient medium was then easily determined by using a central composite design and was found to be 3.16g/l of xylan, 1.94g/l casein hydrolysate, 0.8g/l of NH4Cl. The xylanase production was increased by 135% when the strain was grown in the optimized medium compared to initial medium. 相似文献
14.
Eicosapentaenoic acid (EPA), a well-known member of omega-3 fatty acids, is considered to have a significant health promoting role in the human body. It is an essential fatty acid as the human body lacks the ability to produce it in vivo and must be supplemented through diet. Microbial EPA represents a potential commercial source. GC/MS analyses confirmed that bacterial isolate 717, similar to Shewanella pacifica on the basis of 16S rRNA sequencing, is a potential high EPA producer. Two types of bioreactors, a Stirred Tank Reactor (STR) and an Oscillatory Baffled Reactor (OBR), were investigated in order to choose the optimum system for EPA production. The EPA production media was optimised through the selection of media components in a Plackett–Burman (PB) design of experiment followed by a Central Composite Design (CCD) to optimise the concentration of medium components identified as significant in the Plackett–Burman experiment. The growth conditions for the bioreactor, using artificial sea water (ASW) medium, were optimised by applying Response Surface Methodology (RSM). This optimisation strategy resulted in an increase in EPA from 33 mg/l (10 mg/g biomass), representing 8% of the total fatty acids at shake flask level, to 350 mg/l (46 mg/g biomass) representing 25% of the total fatty acids at bioreactor level. During this study the main effects and the interactions between the bioreactor growth conditions were revealed and a polynomial model of EPA production was generated. Chemostat experiments were performed to test the effect of growth rate and temperature on EPA production. 相似文献
15.
Aims: Statistical optimization of medium components for improved chitinase production by Paenibacillus sp. D1.
Methods and Results: Urea, K2 HPO4 , chitin and yeast extract were identified as significant components influencing chitinase production by Paenibacillus sp. D1 using Plackett–Burman method. Response surface methodology (central composite design) was applied for further optimization. The concentrations of medium components for improved chitinase production were as follows (g l−1 ): urea, 0·33; K2 HPO4 , 1·17; MgSO4 , 0·3; yeast extract, 0·65 and chitin, 3·75. This statistical optimization approach led to the production of 93·2 ± 0·58 U ml−1 of chitinase.
Conclusions: The important factors controlling the production of chitinase by Paenibacillus sp. D1 were identified as urea, K2 HPO4 , chitin and yeast extract. Statistical approach was found to be very effective in optimizing the medium components in manageable number of experimental runs with overall 2·56-fold increase in chitinase production.
Significance and Impact of the Study: The present investigation provides a report on statistical optimization of medium components for improved chitinase production by Paenibacillus sp. D1. Paenibacillus species are gram-positive, spore-forming bacteria with several PGPR and biocontrol potentials. However, only few reports concerning mycolytic enzyme production especially chitinases are available. Chitinase produced by Paenibacillus sp. D1 represents new source for biotechnological and agricultural use. 相似文献
Methods and Results: Urea, K
Conclusions: The important factors controlling the production of chitinase by Paenibacillus sp. D1 were identified as urea, K
Significance and Impact of the Study: The present investigation provides a report on statistical optimization of medium components for improved chitinase production by Paenibacillus sp. D1. Paenibacillus species are gram-positive, spore-forming bacteria with several PGPR and biocontrol potentials. However, only few reports concerning mycolytic enzyme production especially chitinases are available. Chitinase produced by Paenibacillus sp. D1 represents new source for biotechnological and agricultural use. 相似文献
16.
Eun Jung Kim No Soo Kim Gyun Min Lee 《In vitro cellular & developmental biology. Animal》1999,35(4):178-182
Summary To develop serum-free (SF) medium for dihydrofolate reductase-deficient Chinese hamster ovary cells (DG44), a statistical
optimization approach based on a Plackett-Burman design was adopted. DG44 cells which were normally maintained in 10% serum
medium were gradually weaned to 0.5% serum medium to increase the probability of successful growth in SF medium. A basal medium
was prepared by supplementing Dulbecco’s modified Eagle’s medium and Ham’s nutrient mixture F12 with hypoxanthine (10 mg/l)
and thymidine (10 mg/l). Twenty-eight different supplements were selected as variables on the basis of their growth-promoting
abilities. From statistical analysis, leucine, tryptophan, lysine, proline, histidine, hydrocortisone, ethanolamine, and phosphatidylcholine
were identified as important components showing positive effects on cell growth. A new SF medium (SF-DG44) was formulated
by supplementing the basal medium with these components. When the weaned cells were inoculated at 1.0 × 105 cells/ml, a maximum viable cell concentration of 6.4×105 cells/ml was achieved in SF-DG44 medium. In contrast, when the unweaned cells were used, a concentration of only 4.1×105 cells/ml was reached under the same culture conditions, indicating that weaning of cells improves cell growth in SF medium.
In summary, we found that development of a novel SF medium for DG44 cells was facilitated using a Plackett-Burman design technique
and weaning of cells. 相似文献
17.
Han Sun Lei Wang Hongyun Nie Zhenjun Diwu Maiqian Nie Bo Zhang 《Biotechnology progress》2021,37(4):e3155
Yield and cost are two major factors limiting the widespread use of rhamnolipids (RLs). In the present study, waste frying oil (WFO) was used as the sole carbon source to produce environmentally friendly RLs by Pseudomonas aeruginosa NY3. The Plackett–Burman design (PBD) and Box–Behnken design (BBD) methods were used to maximize the production yield of RL. The PBD results showed that the concentrations of NaNO3, Na2HPO4, and trace elements were the key factors affecting the yield of RL. Furthermore, the BBD results showed that at NaNO3, Na2HPO4, and trace elements concentrations were 4.95, 0.66, and 0.64 mL/L, respectively, the average RL yield reached 9.15 ± 0.52 g/L, 1.58-fold higher than that observed before optimization. Fourier transform infrared spectroscopy (FTIR) and liquid chromatography-ion trap-time of flight mass spectrometry (LCMS-IT-TOF) were used to elucidate the diversity of RL congeners. The results showed that, after optimization, the RL congener diversity increased, and the major RL constituent was converted from di-RLs (64.04%) to mono-RLs (60.44%). These results suggested that the concentrations of the components contained in the culture medium of P. aeruginosa NY3 influenced not only the yield of RL, but also its congener distribution. 相似文献
18.
19.
Porntip Paopang Watchara Kasinrerk Chatchai Tayapiwatana Phisit Seesuriyachan 《Preparative biochemistry & biotechnology》2016,46(3):305-312
The single-chain fragment variable (scFv) was used to produce a completely functional antigen-binding fragment in bacterial systems. The advancements in antibody engineering have simplified the method of producing Fv fragments and made it more efficient and generally relevant. In a previous study, the scFv anti HIV-1 P17 protein was produced by a batch production system, optimized by the sequential simplex optimization method. This study continued that work in order to enhance secreted scFv production by fed-batch cultivation, which supported high volumetric productivity and provided a large amount of scFvs for diagnostic and therapeutic research. The developments in cell culture media and process parameter settings were required to realize the maximum production of cells. This study investigated the combined optimization methods, Plackett–Burman design (PBD) and sequential simplex optimization, with the aim of optimize feed medium. Fed-batch cultivation with an optimal feeding rate was determined. The result demonstrated that a 20-mL/hr feeding rate of the optimized medium can increase cell growth, total protein production, and scFv anti-p17 activity by 4.43, 1.48, and 6.5 times more than batch cultivation, respectively. The combined optimization method demonstrated novel power tools for the optimization strategy of multiparameter experiments. 相似文献