首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to investigate protein profiles of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) cultured in normoxic (21% O2) and hypoxic (1% O2) conditions, and evaluate oxygenation effects on angiogenesis in an ischemic hindlimb mouse model using a modified ischemic scoring system. Hypoxic conditions did not change the expression of phenotypic markers and increased adipogenesis and chondrogenesis. Epidermal growth factor (EGF), transforming growth factor alpha (TGF-α), TGF-β RII, and vascular endothelial growth factor (VEGF) were upregulated in the conditioned medium of hypoxic hUCB-MSCs, which are commonly related to angiogenesis and proliferation of biological processes by Gene Ontology. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, significant enrichment of the phosphorylation of abelson murine leukemia viral oncogene homolog 1 (ABL1) (Phospho-Tyr204) and B-cell lymphoma-extra large (BCL-XL) (Phospho-Thr47) as anti-apoptotic pathways was observed in hypoxic hUCB-MSCs. Furthermore, hypoxic conditions induced proliferation and migration, and reduced apoptosis of hUCB-MSCs in vitro. Based on the results of protein antibody array, we evaluated the angiogenic effects of injecting normoxic or hypoxic hUCB-MSCs (1 × 106) into the ischemic hindlimb muscles of mice. Ischemic scores and capillary generation were significantly greater in the hypoxic hUCB-MSC injection group than in the normoxic hUCB-MSC group. Our findings demonstrate that culturing hUCB-MSCs in hypoxic conditions not only significantly enriches phosphorylation in the anti-apoptosis pathway and enhances the secretion of several angiogenic proteins from cells, but also alleviates ischemic injury of hindlimb of mice.  相似文献   

2.
The strictly aquatic breathing Nile tilapia, Oreochromis niloticus is an extremely hypoxia-tolerant fish. To augment our understanding of the effects of hypoxia on anaerobic glycolysis in the Nile tilapia, we studied the effect of short-term for 1 day (trial 1) and long-term for 30 days (trial 2) hypoxia on a selected glycolytic enzymes activity and mRNA expression in liver and white muscle. The hypoxic oxygen concentrations used in the two trials were 2, 1, and 0.5 mg O2 L?1 for comparison with a control normoxic group 8 mg O2 L?1. The activity of phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) in liver and white muscle except liver LDH decreased in trial 1 and increased in trial 2. Assessments of mRNA levels in trial 1 revealed that PFK was downregulated and LDH was upregulated in liver and white muscle, while PK fluctuated between upregulation in liver and downregulation in white muscle. Meanwhile, PK and LDH were upregulated while PFK was similar to control values in both tissues in trial 2. Comet assay results demonstrated an increase in DNA damage that was directly proportional to increasing hypoxic concentrations. This damage was more pronounced in trial 1. This suggests that the Nile tilapia cope better with long-term hypoxic conditions, possibly as an adaptive response.  相似文献   

3.
The inhibition of the 26S proteasome evokes endoplasmic reticulum stress, which has been shown to be implicated in the antitumoral effects of proteasome inhibitors. The cellular and molecular effects of the proteasome inhibitor—bortezomib—on human colon cancer cells are as yet poorly characterized. Bortezomib selectively induces apoptosis in some cancer cells. However, the nature of its selectivity remains unknown. Previously, we demonstrated that, in contrast to normal fibroblasts, bortezomib treatment evoked strong effect on apoptosis of breast cancer cells incubated in hypoxic and normoxic conditions. The study presented here provides novel information on the cellular effects of bortezomib in DLD-1 colon cancer cells line. We observe twofold higher percentage of apoptotic cells incubated for 48 h with 25 and 50 nmol/l of bortezomib in hypoxic conditions and four-, fivefold increase in normoxic conditions in comparison to control cells, incubated without bortezomib. It is of interest that bortezomib evokes strong effect on necrosis of DLD-1 colon cancer cell line. We observe the sixfold increase in necrosis of DLD-1 cells incubated with 25 or 50 nmol/l of bortezomib for 48 h in hypoxia and fourfold increase in normoxic conditions in comparison to adequate controls. We suggest that bortezomib may be candidates for further evaluation as chemotherapeutic agents for human colon cancer.  相似文献   

4.
5.
6.
This study was to investigate the proliferation and differentiation of mouse corneal epithelial progenitor cell in hypoxic airlift culture. Mouse corneal epithelial progenitor cell line progenitor cells were cultured under airlift with normoxic and hypoxic conditions for various durations up to 2 wk. Under normoxic conditions when exposed to air, the hyperproliferation and abnormal epidermal-like differentiation of mouse corneal epithelium was induced, whereas when exposed to air under hypoxic conditions, although we observed augmented proliferation, the abnormal differentiation was inhibited. The mechanism by which hypoxia prevents abnormal differentiation may involve downregulation of Wnt signaling pathways, which were inhibited in cells cultured with hypoxic airlift technique. In conclusion, hypoxia can prevent abnormal differentiation while enhancing the proliferation of corneal epithelial cells by blocking Wnt/β-catenin signaling pathway.  相似文献   

7.
1. The aim of the present work was to determine hypoxia-induced modifications in the cascade of intracellular events coupled to muscarinic acetylcholine receptor (mAChR) activation in brain. For this purpose, enzymatic activities were measured on normoxically incubated frontal cortical slices from mice exposed to hypobaric hypoxia for 72 hr.2. We found that hypoxia induced alterations in several cerebral enzymatic basal activities: it increased nitric oxide synthase (NOS), but it decreased both membrane protein kinase C (PKC) and phospholipase C activities.3. The mAChR agonist carbachol was found to increase phosphoinositide hydrolysis to greater values in hypoxic tissues than those found in normoxic conditions. Furthermore, a greater translocation of PKC in response to carbachol was observed in hypoxic tissues than in normoxic ones.4. Besides, carbachol induced a drastic reduction of NOS activity in hypoxic brains, at concentrations that stimulated this enzyme activity in normoxic preparations. In the latter, inhibition is obtained only with high concentrations of the cholinergic muscarinicagonist.5. These results pointed to a carbachol-mediated mAChR hyperactivity induced by hypoxic insult.6. The possibility that these effects would account for a compensatory mechanism to diminish NOS hyperactivity, probably protecting for NO neurotoxic action in hypoxic brain, is also discussed.  相似文献   

8.
There is insufficient evidence with respect to the effect of the standard anticancer therapeutic agents as well as common dietary supplements on the expression of such genes and microRNAs (miRNAs). Therefore, this study was aimed to study the effect of applying linoleic acid (LA) and docosahexaenoic acid (DHA) fatty acids alone or combined with Taxol on the expression of the matrix metalloproteinase (MMP)-9, MMP-2, vimentin, and talin2 genes, tumor-suppressor miR-194 and, onco-miR-106b in triple-negative breast cancer cell line, known as MDA-MB-231. MDA-MB-231 as metastatic breast cancer cell line was cultured and treated using 0.3 μM Taxol, 100 μM DHA, and 50 μM LA for 24 hours, alone or combined with Taxol under the normoxic and hypoxic conditions. Cells were harvested, after RNA extraction and complementary DNA synthesis, analysis of the expression levels of the studied genes and miRNAs was done through the use of the quantitative real-time polymerase chain reaction (qRT-PCR). Wound healing assay and Western blot analysis were also performed for confirmation. The results of qRT-PCR showed that treating the MDA-MB-231 cells with DHA caused an increase in the miR-194 expression and a decrease in the miR-106b expression, leading to the downregulation of the MMP-2 and MMP-9, and vimentin, and upregulation of the talin2 under the normoxic and hypoxic conditions. The results of the wound healing scratch assay revealed that the administration of the DHA and the DHA-Taxol combination caused the repression of cell migration in comparison with the control groups under the normoxic and hypoxic conditions. The results of the Western blot analysis demonstrated that DHA and the DHA-Taxol combination caused an increase in the expression of the talin2 protein rather than the control cells under both normoxic and hypoxic conditions. This study showed that DHA has significant antimetastatic effects against the triple-negative breast cancer cells. DHA could serve as a promising supplementation for suppressing the breast cancer cell migration, especially under the hypoxic condition.  相似文献   

9.
10.
Survivin, as an anti-apoptotic protein and a cell cycle regulator, is recently gaining importance for its regenerative potential in salvaging injured hypoxic cells of vital organs such as heart. Different strategies are being employed to upregulate survivin expression in dying hypoxic cardiomyocytes. We investigated the cardioprotective potential of a cell permeable survivin mutant protein SurR9C84A, for the management of hypoxia mediated cardiomyocyte apoptosis, in a novel and clinically relevant model employing primary human cardiomyocytes (HCM). The aim of this research work was to study the efficacy and mechanism of SurR9C84A facilitated cardioprotection and regeneration in hypoxic HCM. To mimic hypoxic microenvironment in vitro, well characterized HCM were treated with 100 µm (48 h) cobalt chloride to induce hypoxia. Hypoxia induced (HI) HCM were further treated with SurR9C84A (1 µg/mL) in order to analyse its cardioprotective efficacy. Confocal microscopy showed rapid internalization of SurR9C84A and scanning electron microscopy revealed the reinstatement of cytoskeleton projections in HI HCM. SurR9C84A treatment increased cell viability, reduced cell death via, apoptosis (Annexin-V assay), and downregulated free cardiac troponin T and MMP-9 expression. SurR9C84A also upregulated the expression of proliferation markers (PCNA and Ki-67) and downregulated mitochondrial depolarization and ROS levels thereby, impeding cell death. Human Apoptosis Array further revealed that SurR9C84A downregulated expression of pro-apoptotic markers and augmented expression of HSPs and HTRA2/Omi. SurR9C84A treatment led to enhanced levels of survivin, VEGF, PI3K and pAkt. SurR9C84A proved non-toxic to normoxic HCM, as validated through unaltered cell proliferation and other marker levels. Its pre-treatment exhibited lesser susceptibility to hypoxia/damage. SurR9C84A holds a promising clinical potential for human cardiomyocyte survival and proliferation following hypoxic injury.  相似文献   

11.
Hypoxia and inflammation often develop concurrently in numerous diseases, and the influence of hypoxia on natural evolution of inflammatory responses is widely accepted. Glucocorticoid-induced leucine zipper (GILZ) is thought to be an important mediator of anti-inflammatory and immune-suppressive actions of glucocorticoid (GC). However, whether GILZ is involved in hypoxic response is still unclear. In this study, we investigated the effects of hypoxic exposure and/or the administration of dexamethasone (Dex), a synthetic GC on GILZ expression both in vitro and in vivo, and further explored the relationship between GILZ and proinflammatory cytokines IL-1β, IL-6, and TNF-α under normoxic and hypoxic conditions. We found that hypoxia not only remarkably upregulated the expression of GILZ, but also significantly enhanced Dex-induced expression of GILZ in macrophages and the spleen of rats. ERK activity is found involved in the upregulation of GILZ induced by hypoxia. Inhibiting the expression of GILZ in RAW264.7 cells using specific GILZ small interfering RNA led to a significant increase in mRNA production and protein secretion of IL-1β and IL-6 in hypoxia and abrogated the inhibitory effect of Dex on expression of IL-1β and IL-6 in hypoxia. We also found that adrenal hormones played pivotal roles in upregulation of GILZ expression in vivo. Altogether, data presented in this study suggest that GILZ has an important role not only in adjusting adaptive responses to hypoxia by negatively regulating the activation of macrophages and the expression of proinflammatory cytokines, but also in mediating the anti-inflammatory action of GC under hypoxic conditions.  相似文献   

12.
Bone is a dynamic environment where cells sense and adapt to changes in nutrient and oxygen availability. Conditions associated with hypoxia in bone are also associated with bone loss. In vitro hypoxia (2% oxygen) alters gene expression in osteoblasts and osteocytes and induces cellular changes including the upregulation of hypoxia inducible factor (HIF) levels. Our studies show that osteoblasts respond to hypoxia (2% oxygen) by enhancing expression of genes associated with adipocyte/lipogenesis phenotype (C/EBPbeta, PPARgamma2, and aP2) and by suppressing expression of genes associated with osteoblast differentiation (alkaline phosphatase, AP). Hypoxia increased HIF protein levels, hypoxic response element (HRE) binding, and HRE-reporter activity. We also demonstrate that prolyl-hydroxylases 2 and 3 (PHD2, PHD3), one of the major factors coordinating HIF degradation under normoxic but not hypoxic conditions, are induced in osteoblasts under hypoxic conditions. To further determine the contribution of PHDs and upregulated HIF activity in modulating osteoblast phenotype, we treated osteoblasts with a PHD inhibitor, dimethyloxaloylglycine (DMOG), and maintained cells under normoxic conditions. Similar to hypoxic conditions, HRE reporter activity was increased and adipogenic gene expression was increased while osteoblastic genes were suppressed. Taken together, our findings indicate a role for PHDs and HIFs in the regulation of osteoblast phenotype.  相似文献   

13.
Many of the cancer cells produce energy with accelerated glycolysis and perform lactic acid production even under normoxic conditions called the “Warburg effect”. Metabolism can directly or indirectly regulate the apoptotic mechanism so that cancer cells take advantage of reprogrammed metabolism to avoid apoptosis. The aim of this study is to examine the mechanism of apoptosis by incubating human lung carcinoma cells (A549) under different metabolic conditions in hypoxia or normoxia environments. A549 cells were incubated in the normoxic or hypoxic condition that contained 5 mM glucose (Glc 5), 25 mM glucose (Glc 25), or 10 mM galactose (OXPHOS/aglycemic), and the mechanism of apoptosis was investigated. In the hypoxia condition, the rate of early apoptosis in aglycemic OXPHOS cells was increased (15.5% ±7.1). In addition, the activity of caspase-3 (6.1% ± 0.9), caspase-9 (30.4% ± 0.9), and cytochrome c expression level increased; however, the mitochondrial membrane potential (51.9% ± 0.4) was found to be decreased. Changing the amount of oxygen in glycolytic cells had no effect on apoptosis. However, it has been determined that apoptosis is stimulated under hypoxia conditions in aglycemic cells in which galactose is used instead of glucose. Considering that the majority of cancer cells are hypoxic, these data are important in determining targets in therapeutic intervention.  相似文献   

14.
Botryococcus braunii is a colonial green microalga with recognized potential to synthesize lipids and hydrocarbons for biofuel production. Besides this ability, this microalga also produces exopolysaccharides (EPS). Nevertheless, there are few reports about their biotechnological aspects and industrial applications. In this study, the effect of the nutritional conditions was examined by using two different culture media (BG11 and D medium). To our knowledge, the latter has not been reported before for culturing B. braunii. After 49 days of incubation, the final production of EPS was found to be statistically higher (P < 0.05) in the D medium (0.549?±?0.044 g L?1) than in BG11 (0.336?±?0.009 g L?1). On the contrary, the biomass production was found to be higher in BG11 (1.019?±?0.051 g L?1) than in the D medium (0.953?±?0.056 g L?1). However, this difference was not statistically significant. The difference in salinity and nitrogen concentration between both media is suggested as the main factor involved in the EPS and biomass results. FTIR spectra of B. braunii EPS from both media revealed presence of uronic acids and absence of amino and sulfate groups. Despite the similarity between both spectra, there were some different signals (at 1,921.52 and 720.60 cm?1) which may mean a difference in glycosyl composition.  相似文献   

15.
16.

Objects

To explore the roles of growth factor receptor-bound protein 14 (GRB14) in colorectal cancer (CRC) and its correlation with clinicopathological characteristics and prognosis of CRC patients.

Results

GRB14 was localized in the cytoplasm of CRC and benign glandular epithelium cells, showing higher levels in CRC tissues compared with normal colon samples (P < 0.001). High GRB14 was associated with a high pathological grade (P = 0.045), advanced clinical stage (P = 0.018), enhanced tumor invasion (P < 0.001) and lymph node metastasis (P = 0.028). The cancer genome atlas (TCGA) mRNA sequence data showed that GRB14 was upregulated in CRC at an advanced clinical stage (P = 0.011) with enhanced tumor invasion (P < 0.001) and lymph node metastasis (P = 0.014). Kaplan–Meier survival curves revealed that CRC patients with high GRB14 levels had a shorter survival compared with those showing low GRB14 expression (P = 0.007). High GRB14 expression was an independent prognostic factor for CRC patients (HR 2.847, 95 %CI 1.058–7.659; P = 0.038).

Conclusions

GRB14 may be an important cancer promoter that enhances CRC progression. Upregulated GRB14 levels may predict a poor clinical outcome in CRC patients.
  相似文献   

17.
Many marine microorganisms can secrete exopolysaccharides (EPSs) which have important applications in biotechnology. We have purified a novel EPS from deep-sea bacterium Zunongwangia profunda SM-A87, identified its glycosyl composition and linkage, and optimized its production to 8.9 g/l in previous studies. To reduce the fermentation cost, an economical fermentation medium containing 60.9 % whey, 10 g/l soybean meal, and 2.9 % NaCl was developed. The EPS yield of batch fermentation in this medium reached 12.1?±?0.3 g/l. Fed-batch fermentation was conducted and led to an EPS yield of 17.2?±?0.4 g/l, which represents the highest EPS yield ever reported for a marine bacterium. The EPS was extracted and it displayed good rheological properties, moisture-retention ability, and antioxidant activity. Particularly, its moisture-retention ability is superior to that of other marine bacterial EPSs reported to date. SM-A87 EPS also showed high antioxidant activity. These results suggest that SM-A87 EPS has promising potentials in biotechnology.  相似文献   

18.
A rotational reciprocating plate impeller prototype, designed to improve the mixing homogeneity of viscous non-Newtonian fermentation broth, has been tested in pullulan fermentations. With this new impeller, the operating levels of several factors were investigated to improve pullulan production with Aureobasidium pullulans ATCC 42023 in a 22-L bioreactor using experimental designs. Because both high molecular weight (MW) and high concentration of pullulan were desired; the exopolysaccharide (EPS) concentration and the broth viscosity were used as optimization objective functions to be maximized. A 6-run uniform design was used to investigate five factors. Under the best operating conditions among the six runs, 29.0 g L?1 EPS was produced at 102 h. This condition was used as the starting point for further investigation on the two statistically significant factors, the pH and the agitation speed. An 8-run 3-level custom design that investigates up to second-order effects was used in the second stage. An optimal zone of operating conditions for large quantity of high MW pullulan production was identified. A concentration of 23.3 g L?1 EPS was produced at 78 h. This is equivalent to an EPS productivity of 0.30 g L?1 h?1. The corresponding apparent viscosity of the broth was 0.38 Pa s at the shear rate of 10 s?1.  相似文献   

19.
A new kind of extracellular polysaccharide (EPS) from Pseudomonas fluorescens PGM37 was obtained and culture media was optimized using the statistical methods single factor experiments and response surface methodology (RSM) design. As a result, the optimum cultivation conditions initial pH value, medium volume, inoculum size, temperature, and rotation speed were 7.5, 100 mL/250 mL, 5 %, 28 °C, and 180 rpm, respectively. The optimized media: sucrose 36.23 g?L?1, yeast extract 3.32 g?L?1, sodium chloride 1.13 g?L?1, and calcium chloride 0.20 g?L?1. The maximum predicted yield of EPS was 10.1163 g?L?1 under these conditions. The validation data was 10.012 g?L?1, which could strongly confirm the correlation between the experimental and theoretical values. Gas Chromatography analysis revealed that the polymer was made up of mannose and glucose in the ratio of 1:1. Infrared spectroscopy showed that the polysaccharide had β-D-pyranoid configuration and contained no other substituent. Graded by different multiples of alcohol after specific degradation by enzyme and then detected by LC-ESI-MS, the EPS structure was β-D-Glcp-(1, 4)-β-D-Manp-(1, 4)-β-D-Glcp-(1, 4)-β-D-Manp. The moisture retention ability of the EPS was found to be superior to glycerol and only a little inferior to hyaluronic acid (HA), which presented potential application value in cosmetics and clinical medicine fields.  相似文献   

20.

Rationale

There is evidence that impairments in nitric oxide (NO) signaling contribute to chronic hypoxia-induced pulmonary hypertension. The L-arginine-NO precursor, L-citrulline, has been shown to ameliorate pulmonary hypertension. Sodium-coupled neutral amino acid transporters (SNATs) are involved in the transport of L-citrulline into pulmonary arterial endothelial cells (PAECs). The functional link between the SNATs, L-citrulline, and NO signaling has not yet been explored.

Objective

We tested the hypothesis that changes in SNAT1 expression and transport function regulate NO production by modulating eNOS coupling in newborn piglet PAECs.

Methods and Results

A silencing RNA (siRNA) technique was used to assess the contribution of SNAT1 to NO production and eNOS coupling (eNOS dimer-to-monomer ratios) in PAECs from newborn piglets cultured under normoxic and hypoxic conditions in the presence and absence of L-citrulline. SNAT1 siRNA reduced basal NO production in normoxic PAECs and prevented L-citrulline-induced elevations in NO production in both normoxic and hypoxic PAECs. SNAT1 siRNA reduced basal eNOS dimer-to-monomer ratios in normoxic PAECs and prevented L-citrulline-induced increases in eNOS dimer-to-monomer ratios in hypoxic PAECs.

Conclusions

SNAT1 mediated L-citrulline transport modulates eNOS coupling and thus regulates NO production in hypoxic PAECs from newborn piglets. Strategies that increase SNAT1-mediated transport and supply of L-citrulline may serve as novel therapeutic approaches to enhance NO production in patients with pulmonary vascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号