首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to inorganic arsenic (InAs) through drinking water, even at low to moderate concentrations, is a global public health problem. The objectives of this study were to estimate the risk ratio (HQ), cancer risk (R), and DNA damage (comet assay) of children from three indigenous Yaqui populations located in southern Sonora, Mexico, who were exposed to InAs through drinking water. A cross-sectional study was employed, and analysis of InAs in water and urine was performed via HPLC/ICP-MS. InAs levels in drinking water from Pótam, Vícam, and Cócorit were 108.2, 36.0, and 6.2 μg/L?1 respectively. Children from Pótam had arsenic concentrations in urine of 107.1 μg As L?1 compared with 40.3 μg As L?1 for the children of Cócorit. The HQ values for the children of Pótam, Vícam, and Cócorit were 16.64, 6.02, and 0.94, while the R values were 9.4E-04, 3.5E-04, and 5.7E-05, respectively. Children with the highest arsenic exposure had significantly increased DNA damage (OTM = 14.4 vs. 4.3) [p < 0.0005] which positively correlated with urinary arsenic levels (r = 0.56, p < 0.0001). In conclusion, children of Pótam and Vícam are at significant risk of developing chronic diseases and cancers associated with chronic exposure to this metalloid.  相似文献   

2.
Arsenic speciation and cycling in the natural environment are highly impacted via biological processes. Since arsenic is ubiquitous in the environment, microorganisms have developed resistance mechanisms and detoxification pathways to overcome the arsenic toxicity. This study has evaluated the toxicity, transformation and accumulation of arsenic in a soil microalga Scenedesmus sp. The alga showed high tolerance to arsenite. The 72-h 50 % growth inhibitory concentrations (IC50 values) of the alga exposed to arsenite and arsenate in low-phosphate growth medium were 196.5 and 20.6 mg? L?1, respectively. When treated with up to 7.5 mg? L?1 arsenite, Scenedesmus sp. oxidised all arsenite to arsenate in solution. However, only 50 % of the total arsenic remained in the solution while the rest was accumulated in the cells. Thus, this alga has accumulated arsenic as much as 606 and 761 μg? g?1 dry weight when exposed to 750 μg? L?1 arsenite and arsenate, respectively, for 8 days. To our knowledge, this is the first report of biotransformation of arsenic by a soil alga. The ability of this alga to oxidise arsenite and accumulate arsenic could be used in bioremediation of arsenic from contaminated water and soil.  相似文献   

3.
The effect of enhanced soil risk element contents on the uptake of As, Cd, Pb, and Zn was determined in two pot experiments. Simultaneously, transformation of arsenic and its compounds in beetroot (Beta vulgaris L.) plants was investigated. The mobile fractions of elements were determined in 0.05 mol L−1 (NH4)2SO4 extracts and did not exceed 2% of total soil arsenic, 9% of total cadmium, 3% of total lead, and 8% of total zinc, respectively. Although the soils were extremely contaminated the mobile portions of the elements represented only a small fragment of the total element content. Arsenic contents in beet plants reached up to 25 mg As kg−1 in roots and 48 mg As kg−1 in leaves in the soil characterized by the highest mobile arsenic portion. Arsenic portions extractable with water and phosphate buffer from the beetroot samples did not show significant differences between the extraction agents but the extractability was affected by the arsenic concentration. Arsenic was almost quantitatively extractable from the samples with the lowest total arsenic concentration, whereas in the samples with the highest total arsenic concentration less than 25% was extractable. Arsenate was the dominant arsenic compound in the extracts (70% in phosphate buffer, 50% in water extracts). A small portion of dimethylarsinic acid, not exceeding 0.5%, was detected only in the sample growing in the soil with the highest arsenic concentration. The role of betalains (betanin, isobetanin, vulgaxanthin I and vulgaxanthin II) in transformation/detoxification of arsenic in plants was not confirmed in this experiment because the plants were able to grow in the contaminated soil without any symptoms of arsenic toxicity.  相似文献   

4.
Enrichment of trace elements in groundwater poses considerable risks to human health. The concentrations of seven trace elements (Cr, Mn, Ni, Cu, Zn, Cd, and Pb) in 34 samples of shallow groundwater from the study area were estimated. We assessed the concentrations of the trace elements and health risks with statistical analysis and the US Environment Protection Agency (USEPA) model. The results showed that the mean concentrations of trace elements decreased as follows: Mn > Zn > Ni > Cr > Cu > Cd > Pb. Apart from Mn at one sampling point, the concentrations of all trace elements were below the guideline values of the World Health Organization for drinking water. Correlation and cluster analysis indicated that the trace elements fell into groups, with Ni and Cu in one group, and Mn, Zn, and Cd in another, which suggested that the trace elements grouped together had similar sources. The total non-carcinogenic risk values ranged from 8.52 × 10?4 to 1.27 × 10?1. The total carcinogenic risk caused by Cr and Cd averaged 1.62 × 10?6, which exceeded the acceptable level of 1 × 10?6 recommended by the USEPA. The carcinogenic risk of Cr accounted for 75.93% of Rtotal.  相似文献   

5.
An ecotype of brake fern (Pteris vittata) was assessed for arsenic tolerance and accumulation in its biomass under in vivo and in vitro condition; using soil, and agar-gelled Murashige and Skoog (MS) medium supplemented with different concentrations of arsenic. The plants were raised in soil amended with 100–1000 mg arsenic kg−1 soil, and MS medium was supplemented with 10–300 mg arsenic 1−1 medium using Na2HAsO4 · 7H2O. The spores and haploid gametophytic-prothalli were raised in vitro on MS medium supplemented with arsenic. The field plants showed normal growth and biomass formation in arsenic amended soil, and accumulated 1908–4700 mg arsenic kg−1 dry aerial biomass after 10 weeks of growth. Arsenic toxicity was observed above >200 mg arsenic kg−1 soil. The concentrations of arsenic accumulated in the plant biomass were statistically significant (p < 0.05). Normal plants were developed from spores and gametophyte prothalli on the MS media supplemented with 50–200 mg arsenic 1−1 medium. The in vitro raised plants were tolerant to 300 mg arsenic kg−1 of soil and accumulated up to 3232 mg arsenic kg−1 dry aerial biomass that showed better growth performance, biomass generation and arsenic accumulation in comparison to the field plants. The text was submitted by the authors in English.  相似文献   

6.
The present study was conducted to estimate As concentration in groundwater and resulting human health risk in terms of chronic daily intake, hazard quotient (HQ), hazard index (HI), and carcinogenic risk (CR) both for oral and dermal exposure to As. Groundwater samples (n = 100) were collected from ten different towns of Lahore District (Pakistan). Arsenic concentration ranged from 2 to 111 µg L?1 in groundwater samples of the study area, which was significantly greater than the safe limit of As (10 µg L?1) in drinking water set by the World Health Organization. Health risk assessment of As showed that HQ (0.1–11) for oral exposure and HI (0.1–11) values also exceeded the typical toxic risk index value of 1. 9.75 × E-05–4.59 × E-03 and 5.89 × E-07–2.77 × E-05 for oral and dermal As exposure, respectively. Both CR and cancer index (CIs) values were higher than United States Environmental Protection Agency limit (10?6), suggesting that people are at high risk of As-induced carcinogenicity from oral and dermal exposure to As in drinking water. It was concluded that As contamination of groundwater causes carcinogenic and noncarcinogenic health effects to the people; therefore, urgent management and remedial actions are required to protect people from As poisoning.  相似文献   

7.
Arsenic hyperaccumulation by Pteris vittata L. (Chinese brake fern) may serve as a defense mechanism against herbivore attack. This study examined the effects of arsenic exposure (0, 5, 15 and 30 mg kg?1) on scale insect (Saissetia neglecta) infestation of P. vittata. Scale insects were counted as a percentage fallen from the plant to the total number of insects after 1 week of As-treatment. The arsenic concentrations in the fronds ranged from 5.40 to 812 mg kg?1. Greater arsenic concentrations resulted in higher percentage of fallen-scale insects (17.2–55.0%). Lower arsenic concentrations (≤5 mg kg?1) showed significantly lower effect on the population compared to 15–30 mg kg?1 (p < 0.05). Arsenic content in the fallen-scale insects was as high as 194 mg kg?1, which indicated that arsenic has been ingested by the scale insects via plant sap. This study is consistent with the hypothesis that arsenic may help P. vittata defend against herbivore's attack.  相似文献   

8.
Abstract

This study was performed to measure arsenic (As) contents in groundwater/drinking water of high schools and its effects on human health. Chronic daily intake, hazardous quotient (HQ), carcinogenic risk (CR), hazardous index (HI), and carcinogenic indices (CI) for oral and dermal exposure to arsenic were calculated. Samples were taken from high schools in four tehsils of Multan. As contents ranged from 3.25 to 184?µg/l and 99% samples exceeded World Health Organization safe limit (10?µg/l). HQ for Multan city (1.70) and for Multan Saddar (1.38) exceeded USEPA permissible toxic risk value (1.0). CR in four tehsils for oral (0.0001–0.0003) and dermal exposure (0.0000049–0.000011) exceeded USEPA limit (10?6). HI for tehsil Multan city (1.75) and Multan Saddar (1.42) exceeded the limit (1.0). CI for four tehsils ranged from 0.00022 to 0.0008 exceeding USEPA limit (10?6) indicating high chronic and carcinogenic health risk to exposed population. Results indicated that groundwater of district Multan is not fit for human consumption due to excessive arsenic contamination. It invites attention of water supplying agency and educational authorities to take steps for provision of arsenic free safe drinking water to students and local area peoples.  相似文献   

9.
Groundwater is the main source of drinking water in both rural and urban areas of the Pratapgarh district in the eastern Uttar Pradesh. Fifty-five groundwater samples were collected from 17 blocks of the Pratapgarh district and analyzed for fluoride (F?) and other water quality parameters (pH, EC, TDS, turbidity, Cl?, HCO3?, SO42?, NO3?, Ca2+, Mg2+, Na+, K+, silica and total hardness) to assess its suitability for drinking uses. The fluoride concentration in the analyzed groundwater of the Pratapgarh district varied between 0.41 and 3.99 mg/L. Fluoride concentration in about 78% of the groundwater samples exceeded the acceptable level of 1.0 mg/L, while in 70% samples it exceeded the maximum permissible limit of 1.5 mg/L. A geographic information system (GIS) tool was used to study the spatial variation of fluoride concentrations in the groundwater of the Pratapgarh district. Fluoride is positively correlated with pH (0.36) and HCO3? (0.22) and negatively with Ca2+ (?0.23) and Mg2+ (?0.08), suggesting dissolution of fluoride-bearing minerals with the precipitation of Ca/Mg carbonate in the alkaline environment. The maximum exposure dose to fluoride for adults in the study area was found to be 6.8 times higher than the minimum risk level (MRL) of 0.05 mg kg?1 day?1 estimated by the Agency for Toxic Substances and Disease Registry (ATSDR).  相似文献   

10.
Increasing demands of groundwater in petroleum-recovering regions could elevate the level and mobility of arsenic in groundwater as a result of the enhanced dissolution of arsenic-bearing iron or manganese oxide due to the accelerated sulfate reduction by microorganisms in a reductive environment. To substantiate this possibility, groundwater samples were collected from 220 water wells in the nearby petroleum wells in Kuitun. Dissolved arsenic, iron, manganese, and sulfate levels and pH in groundwater samples were analyzed. The dissolved arsenic levels in groundwater varied from <2.3 to 789.4 μg·L?1, in which approximately 96.4% of the measured values exceeded the allowed limits of the World Health Organization. An inverse relation existed between dissolved arsenic and sulfate levels. Most of the high arsenic-level samples (>300 μg·L?1) were found in wells at close proximity to petroleum wells where a high iron or manganese level was also detected. The oil-exploring activity in the study region seemed to have enhanced the microbial reduction of sulfate in underground environment and hence the level of arsenic in groundwater. The microbial sulfate reduction coupled with the reduction of arsenic-bearing iron oxides in the groundwater environment may explain the spatial heterogeneity of the arsenic level in groundwater.  相似文献   

11.
Motivated partly by concerns about cancer, the U.S. Congress in 1986 amended the Safe Drinking Water Act (SDWA) by requiring that community water systems monitor 81 chemicals and remove those detected at concentrations above health-based standards. No prior research has used the resulting 30 years of monitoring data to analyze cancer risks from chemicals in US drinking water. To fill this gap, this paper uses chemical monitoring data from North Carolina's (NC's) 2,120 community water systems along with a risk assessment approach commonly applied in global burden of disease studies to quantify cancer risks of regulated chemicals in drinking water. The results indicate that 0.30% of NC cancer deaths are attributable to regulated drinking water contaminants and that the average annual individual risk is 7.2 × 10?6. More than 99% of this risk arises from disinfection by-products, with the remaining risk mostly attributable to arsenic and alpha particle radiation. In no water system does the combined risk from chemicals other than disinfection by-products, arsenic, or alpha particles exceed 10?4. The results suggest that regulated chemicals pose very low cancer risks and that risks from chemicals other than disinfection by-products, arsenic, and alpha particles are negligible in NC community water systems.  相似文献   

12.
The effects of arsenate, Fe2+, and phosphate on amount and composition of Fe-oxide plaque at the rice-root surface and on the yield and arsenic accumulation in rice (cv. BRRI dhan33) were studied in a replicated pot-culture experiment. Arsenic in the form of Na2HAsO4 was applied at concentrations of 0, 15 and 30 mg kg?1 in combination with P and/or Fe at 0 and 50 mg kg?1, from KH2PO4 and FeSO4, respectively. Root, grain and straw yields and their As, Fe and P concentrations were determined. The Fe-oxide plaque was extracted from the plant roots using dithionite-citrate-bicarbonate (DCB) and NH4-oxalate extractions. The addition of Fe2+ reduced the toxic effect of As in flooded-rice culture and resulted in reduced grain-As accumulation and increased grain yields. The effect of applied phosphate was the opposite, in that it resulted in higher As concentrations in both grain and straw and lower grain yields. The effects of both Fe and P can be explained based on their impacts on adsorption of As onto soil and rice-plaque Fe-oxides and the subsequent As solubility and availability for uptake by rice. These reactions have important implications to rice-crop management and the natural variability in soils and irrigation-water characteristics that might impact As uptake by rice.  相似文献   

13.
Zhu Y M  Wei C Y  Yang L S 《农业工程》2010,30(3):178-183
This study was conducted to assess the effectiveness of phytoremediation on a tailing dam located in Shimen County, Hunan Province. Quadrat survey method was employed to investigate and sample the dominant plant species growing on the rehabilitated tailing dam. The fertilities of the soils were assessed, and concentrations of arsenic and other heavy metals in the plant and soil samples were measured. The results showed that no difference was found on the effect of soil capping with top and non-topsoils for rehabilitation of plants on the tailing dam. After rehabilitation, stable vegetation coverage types were established, 39 plant species were found to grow on the tailing dam, and the minimal area for plant communities was 30 m2. The dominant plant species were planted Pteris vittata and natural colonizing Miscanthus sinensis. The contents of organic matter, nitrogen and phosphorus in the soils were low, while the potassium content was at a middle level; however, plots where Legumina plants grew were found to have higher level of nitrogen and phosphorus in the growing soils. Arsenic (As) and Cadmium (Cd) concentrations in the soils were 8 and 7 times of the grade III value of the National Standard for Soil Quality (GB15618-1995), respectively; while in tailings these were 81 and 68 times. The available As concentration in the soils ranged as 3.7–29.5 mg kg?1, whereas the available As concentration in tailings was as high as 61.1 mg kg?1. Concentrations for most of the heavy metals were in the normal range of terrestrial higher plants, except As and Cd in P. vittata and M. sinensis, and As in the roots of M. sinensis. It is concluded that phytoremediation project has reduced the ecological and health risks caused by the tailing dam to the ambient environment. However, the plants growing on the tailing dam which contained high As and Cd should be kept from entering into food chain in order to protect the health of local residents.  相似文献   

14.
Abstract

Shallow groundwater contaminated with nitrates may result in human health risks. Groundwater quality in the Beni Amir irrigation perimeter in Tadla plain, Morocco, is influenced by agriculture and farming-related activities. This study was carried out to assess the nitrate contamination of groundwater for drinking purposes by comparing it to Moroccan and WHO guidelines, and by estimating the potential human health effect of nitrates using the model recommended by the USEPA. The results showed that the nitrate content of groundwater fall between 0 and 82.08?mg L?1 (mean 24.73?mg L?1), with 38.10% of groundwater samples exceed the Moroccan and WHO limits for drinking. Groundwater nitrates mainly originated from intensive agricultural practices. The health effects of oral exposure to nitrate are higher than those of dermal exposure. For non-carcinogenic risks, 57.14% of samples showed hazard index (HI) values >1, indicating potential risks. The non-carcinogenic risk for infant and female are higher than that for females and males. The results of this study will offer a health risk reference for local residents and can help to propose suitable management ensuring safe drinking water.  相似文献   

15.
The concentrations of the 16 U.S. Environmental Protection Agency polycyclic aromatic hydrocarbons (PAHs) were measured in urban street dust with a view to understanding the potential risk to urban residents exposed to street dust, sources, and distribution of the PAHs. Gas chromatography–mass spectrometry was used to measure the concentrations of the PAHs after ultra-sonication with hexane/dichloromethane and clean up. The total concentrations of the ?16 PAHs in the urban street dust from Warri and its environs ranged from 165.1 to 1012 µg kg?1. The isomeric ratios and the PCA indicated that combustion of petroleum and biomass are the major sources of PAHs in Warri and its environs. The total BaP carcinogenic and mutagenic potency concentrations (?BaPTEQ and ?BaPMEQ) were in the range of 0.03 to 219 µg kg?1 and 0.52 to 182 µg kg?1, respectively. The incremental life cancer risk from exposure of the residents of Warri and its environs ranged from 4.07 × 10?7 to 3.11 × 10?3 and 2.13 × 10?7 to 1.49 × 10?3 for the children and adults, respectively, which were higher than the baseline value of acceptable risk of 10?6 (i.e., one case per million people).  相似文献   

16.
Arsenic is a toxic element and may be found in natural as well as in industrial water; therefore, before using water for drinking purpose, its proper treatment is required. Thus, the aim of this work was to evaluate the potential of chitosan nanoparticles, in a continuous-flow method, for the removal of arsenic (III) and (V) from aqueous solutions. All experiments were conducted in fixed-bed columns. Experiments were carried out as a function of varying liquid flow rate (0.3–1.0 ml/min), initial metal concentration (0.5–1.5 mg/L), and bed height (3–9 cm) of adsorbent. The total adsorbed quantity, equilibrium uptake, and total percentage removal of arsenic ions were determined by evaluating the breakthrough curves obtained at different flow rates, initial concentrations, and bed heights. The results showed that the column performed well at the lowest flow rate. Also, column bed capacity and exhaustion time were found to increase with increasing bed height. When initial metal ion concentration was increased from 0.5 to 1.5 mg/L, the corresponding adsorption bed capacity decreased from 0.076 to 0.028 mg/g. The bed depth service time model (BDST) model was used to analyze the experimental data and the model parameters were evaluated. The calculated values of N o and K a were found to be 19.28 × 10?2 mg/L and 0.662 L/mg·min, respectively. Good agreement was found between the experimental breakthrough curves and the model predictions.  相似文献   

17.
The Neretva River Delta in Croatia is under constant threat of pollution from various sources along the river watercourse, such as the aluminium industry and bauxite mining, intensive agriculture and untreated sewage from towns. The area is also an important fishing ground and food source for the local residents, whereby the suitability of fish for human consumption is always in question. In this paper the presence of arsenic from six sources was analysed: in water, sediment and fish organs (kidneys, liver, muscles and gonads) of 11 fish species: Lepomis gibbosus, Carassius auratus gibelio, Cyprinus carpio, Anguilla anguilla, Ameiurus nebulosus, Mugil cephalus, Leuciscus svallize, Oncorhynchus mykiss, Salmo trutta, Tinca tinca and Scardinius plotiza. The research showed that arsenic concentrations varied significantly from one source to another in the water, sediment and organs of different fish species. Average concentrations in water and sediment were 18.1 μg L?1 and 32.7 μg kg?1, respectively. Average arsenic levels in the fish organs were 115.9, 105.8, 76.1 and 61.9 μg kg?1 in muscles, kidneys, gonads and livers, respectively. These values are below legally permitted concentrations, although individuals with higher than average concentrations were recorded.  相似文献   

18.
Access to drinking water is one of the most important indicators determined by the World Health Organization (WHO). This investigation surveyed the concentration of various pollutants in drinking water and its health risk attribute to Arsenic in Sistan and Baluchistan province, Iran. Water samples were collected from ground water and analyzed for physical parameters, anions, and heavy metals using the standard procedures. The concentrations of sulfate (269 ± 127 mg/l) in five sites exceeded the permissible limit (250 mg/l), while chlorine concentrations (223 ± 100 mg/l) in four sites exceeded the permissible limit (250 mg/l) set by WHO. Similarly, the concentrations of Mg (30 ± 11 mg/l) in four sites exceeded the permissible limit (30 mg/l), while Na concentrations (222 ± 99 mg/l) in five sites exceeded the permissible limit (200 mg/l) set by Institute of Standards and Industrial Research of Iran (ISIRI). In addition, arsenic was in acceptable levels recommended by WHO and local regulations. Based on the calculated indices of hazard qutient (HR) and excess lifetime cancer risk (ELCR), the in-use drinking water has no adverse effects on the consumer's health. Excessive use of fertilizers and pesticides, unsuitable sewerage systems, and inappropriate sludge and solid waste disposal in this province can lead to drinking water pollution. Also, excessive pumping of ground water should be managed as an effective method for supply of safe drinking water.  相似文献   

19.
This study was aimed to examine the risk of chronic arsenic (As) exposure for the residents living in Nui Phao, Thai Nguyen in the northern Vietnam. Groundwater, vegetables, human hair, and nail samples were collected from volunteers living in Nui Phao. The results revealed that 75% of the groundwater samples had As exceeding the World Health Organization (WHO) drinking water guideline of 10 µg L?1. The result of As concentration for most of the vegetable samples was greater than the WHO/FAO safe (0.1?mg kg?1). The result of hair and nail samples in this study showed that 3.5 and 20% of the samples had As concentration exceeding the level of As toxicity in hair and nails, respectively. The result of health risks indicated that the potential health risk of As contamination is greater for groundwater than vegetables. The total hazard quotient (HQ) value through vegetables ingestion and drinking water exceeded 1.0 suggesting potential health risk for local residents. The calculation of potential carcinogenic risk through both consumption of vegetables and drinking water was low cancer risk in adults. Other food sources and the exposure pathways are needed to exactly assess health risks in this area.  相似文献   

20.
Arsenic is a well known carcinogenic environmental pollutant although its mechanism of action remains unknown. Since alterations in chromosome segregation have been observed in individuals exposed to high concentrations of arsenic in the drinking water, the aneuploidogenic potential of arsenic was evaluated in vitro. Whole blood cultures were incubated for 72 h and treated with various concentrations of sodium arsenite for the last 24 h. Cells were harvested and samples were processed specially for aneuploidy evaluation. The number of chromosomes in 200 metaphases of first and second division cells was scored. A dose-related effect was observed: the highest concentration (10−2 μM) induces 28.33% and 22.4% hyperploid cells in first and second division respectively and 29% tetraploid cells. The colchicine-like effect of arsenic was also evaluated. Mitotic arrest was evaluated in cultures treated for the last 2 h. Sodium arsenite can produce 40.24% and 12.93% of the colcemid effect (mitotic arrestant effect at 10−2 μM and 10−10 μM respectively). A different individual susceptibility effect was observed in both parameters and confirmed with the chromosome aberrations levels induced by arsenic in the same donors. Data indicate that sodium arsenite has an aneuploidogenic and a mitotic arrestant effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号