首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a total of 69 topsoil samples and 10 Panax notoginseng samples from Yunnan Province were collected and the concentrations of As, Cd, Cu, Hg, Ni, Pb and Zn in all the samples were determined. The hazard index (HI), total carcinogenic risk (TCR) and estimated daily intake (EDI) of heavy metals were calculated to assess the health risk of P. notoginseng growers and consumers. The average concentrations of As, Cd, Cu, Hg, Ni, Pb and Zn in P. notoginseng planting soils are 43.6, 0.55, 50.8, 0.30, 73.4, 58.2, and 161 mg/kg, respectively. The average Nemerow integrated pollution index of heavy metals in soils is 1.8, indicating that the P. notoginseng planting soils are slightly polluted by those heavy metals. The average HI value is 1.29 and the TCR value of As is above the threshold value, suggesting that As pollution in soil has adverse impact on local growers' health. P. notoginseng is polluted by Cd, As and Pb. 39.1% of estimated daily intakes of As for P. notoginseng consumers through leaf consumption exceeding its permitted daily exposure dosages, suggesting that there is a potential health risk for P. notoginseng consumers to consume P. notoginseng leaves.  相似文献   

2.
The aims of this study were to determine the concentrations, distribution, potential ecological risk (PER), and human health risk (Risk) of heavy metals in urban soils from a coal mining city in China. A total of 36 topsoil samples from Huainan city, Anhui, East China, were collected and analyzed for As, Hg, Pb, Cd, Cr, and Cu. The PER was calculated to assess the pollution level. The hazard index (HI) and carcinogenic risk were used to assess the human health risk of heavy metals in the study area. The average concentration of As, Hg, Pb, Cd, Cr, and Cu were 12.54, 0.21, 24.21, 0.19, 49.39, and 21.74 mg kg?1, respectively. The correlations between heavy metals indicated that Cu, Cr, Cd, and Pb mainly originated from automobile exhaust emissions, coal gangue, fly ash, and industrial wastewater, and that As and Hg mainly came from coal combustion exhaust. The PER index values of heavy metals decreased in the following order: Hg > Cd > As> Cu > Pb > Cr. The HI and Risk values indicated that the noncarcinogenic and carcinogenic risks of selected metals in the urban soil were both below the threshold values.  相似文献   

3.
Mining activities produce waste tailings that can be a significant source of pollution in the surrounding ecosystem. This study was designed to estimate the magnitude of Fe, As, Pb, Cd, Mn, Ni, Zn, and Cr in soil impacted by activities in the Moeil iron ore mine area of northwestern Iran and initially assess the potential risk to nearby residents and ecological habitats. For this, concentrations of elements in 24 samples from 8 locations were analyzed by inductivity coupled plasma optical emission spectrometry. Concentrations of heavy metals reported for samples collected from the area ranged from 50,247–466,200 mg/kg for Fe, 40–10,827 mg/kg for As, 9–84 mg/kg for Pb, 0.2–58.4 mg/kg for Cd, 32–424 mg/kg for Mn, 4–32 mg/kg for Ni, 37–60 mg/kg for Zn, and 32–337 mg/kg for Cr. Reported levels of Fe and As in particular are indicative of severe contamination and imply a high risk to ecological receptors. Reported levels of arsenic also imply elevated cancer and non-cancer health risks to residents who work in or pass through the area. Reported levels of Cd and Cr in soil samples also indicate an elevated cancer risk posed by these metals. The result of this study indicates it is important to estimate potential contamination of soils and drinking water wills in the vicinity of Moeil village to arsenic and heavy metals.  相似文献   

4.
In recent years, heavy metal contamination in suburban vegetable soils calls for significant concerns due to the rapid urbanization and industrialization. In present study, 110 suburban vegetable soil samples from Yanbian, Northeast China, were collected. Concentration characteristics, pollution level, health risk, and source identification were evaluated by using different quantitative indices. Concentrations of Pb, Cr, Cu, Ni, Zn, Cd, and As in suburban soils were measured. Mean concentrations of Pb, Cr, Cu, Ni, Zn Cd, and As were 34.9 ± 10.5, 73.5 ± 44.4, 29.6 ± 19.4, 23.4 ± 12.0, 88.5 ± 26.7, 0.16 ± 0.16, and 9.24 ± 3.79 mg/kg, which were showed significantly higher than corresponding background values of Jilin province, respectively. The soils were moderately heavy polluted by Cu and Cd based on the results of geo-accumulated index and pollution indices. The pollution load index indicated that almost all of the study area were middle or heavy polluted, especially in Antu County and Helong City. Children in Yanbian may pose non-carcinogenic and carcinogenic risks with the major exposure pathway of ingestion. Principle component analysis results suggested that Pb, Cu, Zn, and Cd were mainly associated with agricultural activities, Ni and Cr were defined as combined source (lithogenic and anthropogenic), and As was tended to be from excessive application of pesticides and industrial activities.  相似文献   

5.
Heavy metals in soil can affect human health through the exposure pathways of oral ingestion, dermal contact, and inhalation. In this study, to assess the health risk of heavy metals in the agricultural area of Xinglonggang, 52 soil samples were collected and tested to obtain the concentrations of As, Cd, Cr, Cu, Ni, Pb, V, and Zn in the soil. The enrichment factor indicated that the heavy metals of the agricultural soils were enriched, but the degree of enrichment was mild for all of the heavy metals. Coefficient analysis and principal component analysis indicated that V, Cr, Ni, and Pb were mainly from natural sources, As was from irrigation, Cu and Cd tended to be from chemical fertilizers and pesticides, and Zn was from mixed sources including irrigation, chemical fertilizers, and pesticides. A human-health risk assessment indicated that the residents in the study area face high risk from carcinogens and low risk from noncarcinogens; As and Cr are the major heavy metals affecting human health. This study provides a reference and a basis for formulating effective measures to prevent and control heavy metal enrichment in agricultural soils.  相似文献   

6.
7.
This investigation was conducted to survey the levels of cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu), zinc (Zn), and manganese (Mn) in polished rice collected at supermarkets located in Hengyang, China. The surveyed rice samples were grouped according to their production areas into four different groups—Hunan, Jiangxi, Jilin, and Thailand. The data showed that the highest means of Cd, Pb, Cr, Cu, Zn, and Mn contents were in rice samples produced from Hunan (0.215 mg/kg), Thailand (0.537 mg/kg), Hunan (0.348 mg/kg), Jiangxi (2.472 mg/kg), Thailand (17.259 mg/kg), and Jinlin (9.326 mg/kg), respectively. Average daily intake dose for the six elements through consumption of rice was lower than the oral reference dose. Although the hazard quotient values for all six elements were <1.0, hazard index values in all the production areas (except Thailand) were >1.0, and cancer risk (CR) and total CR values were >10?4, respectively. Certainly, there are inherent limitations for these health risk values, including actual ingestion rate, exposure duration, and bioavailability of heavy metals. These results indicate that long-term heavy metal exposure by consumption of rice in Hengyang could pose both potential non-carcinogenic and carcinogenic health risks to the local residents.  相似文献   

8.
成都平原北部水稻土重金属含量状况及其潜在生态风险评价   总被引:13,自引:0,他引:13  
秦鱼生  喻华  冯文强  王正银  涂仕华 《生态学报》2013,33(19):6335-6344
为了解成都平原水稻土重金属含量状况和潜在的生态风险,选取成都平原北部水稻土典型区域为研究对象,采集了158个表层土壤样品,分析了土壤中pH值和Cd、Cu、As、Hg、Pb、Cr、Ni 7种重金属元素含量,以20世纪80年代测定的成都平原土壤重金属元素背景值为评价标准,采用Hakanson潜在生态危害指数法对研究区域的重金属潜在生态风险进行了评价。结果表明:研究区域水稻土Cd、Hg、Ni、Cu、Pb、Cr和As平均含量分别为0.709、0.187、32.08、34.12、31.52、82.13 mg/kg和7.25 mg/kg;Cd、Ni、Cu和Hg 4种重金属超过《土壤环境质量标准》(GB15618-1995) Ⅱ级标准值样本比例分别为87.34%、8.23%、3.80%和3.80%,Cd含量超标严重。7种重金属元素变异系数幅度为18.35%-49.03%,由大到小依次为Cd、Hg、Cu、As、Ni、Cr、Pb。75.32%的样本达到中度或较强重金属潜在生态风险,区域整体表现为中度潜在生态风险(RI平均值为198.65),Cd和Hg为高生态风险元素,对潜在生态风险贡献率分别为62.27%和20.78%,As、Pb、Cu、Ni、Cr为低生态风险元素;风险概率图显示城区周边和绵远河沿线的潜在生态风险等级较高。因此,成都平原水稻土农业生产中应采取一定的措施防控农产品Cd和Hg污染。  相似文献   

9.
A total of 455 agricultural soil samples from four nonferrous mines/smelting sites in Shaoguan City, China, were investigated for concentrations of 10 heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn). The mean concentrations of the metals were 72.4, 5.16, 13.3, 54.8, 84.5, 1.52, 425, 28.2, 529, and 722 mg kg?1, respectively. The values for As, Cd, Hg, Pb, and Zn were more than 8 and 1.5 times higher than their background values in this region and the limit values of Grade II soil quality standard in China, respectively. Estimated ecological risks based on contamination factors and potential ecological risk factors were also high or very high for As, Cd, Hg, and Pb. Multivariate analysis (Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) strongly implied three distinct groups; i.e., As/Cu/Hg/Zn, Co/Cr/Mn/Ni, and Cd/Pb. Local anomalies for As, Cu, Hg, and Zn by a probably anthropogenic source (identified as mining activity), Co, Cr, Mn, and Ni by natural contribution, and a mixed source for Cd and Pb, were identified. This is one of the few studies with a focus on potential sources of heavy metals in agricultural topsoil around mining/smelting sites, providing evidence for establishing priorities in the reduction of ecological risks posed by heavy metals in Southern China and elsewhere.  相似文献   

10.
This study aimed to determine bioavailability of heavy metal concentrations (Al, Fe, Zn, Cu, Co, Cd, Pb and Cr) in 76 urban surface soil samples of Klang district (Malaysia). This study also aimed to determine health risks posed by bioavailability of heavy metals in urban soil on adults and children. For bioavailability of heavy metal concentrations, a physiologically bioavailability extraction test in vitro digestion model was used. Mean values of bioavailability heavy metal concentrations for this study were found to be the highest in Al (25.44 mg/kg) and lowest in Cr (0.10 mg/kg). Results of Spearman correlation coefficient (r) values showed significant correlations were observed for Al-Fe (r = 0.681), Cd-Co (r = 0.495), Cu-Zn (r = 0.232), Fe-Pb (r = 0.260), Fe-Zn (r = 0.239). For cluster analysis, output showed that these heavy metals could be classified into four clusters: Cluster 1 consisted of Cd, Cr, Co, and Pb; Cluster 2 consisted of Zn and Cu; Cluster 3 consisted of Fe; and Cluster 4 consisted of Al. For Clusters 1 and 2, anthropogenic sources were believed to be the sources, while for Clusters 3 and 4 the heavy metals originated from natural sources. Health risks were determined in adults and children through health risk assessment. For adults, Hazard Quotient (HQ) value was <1, indicating no non-carcinogenic risk, while for children, the HQ value was >1, indicating a non-carcinogenic risk. Meanwhile, for carcinogenic risk, heavy metal contamination in the Klang district might not pose a carcinogenic risk to adults while it may pose a carcinogenic risk to children because TR values in this study were >1.0E-04 for children. Output has identified the general health risk in the Klang district. Moreover, this study's findings will contribute to fill in the gap of knowledge on heavy metals' impacts on human health and urban development in the Klang District.  相似文献   

11.
Abstract

Identifying the source effect on heavy metals to human health risk is essential for devising and implementing restoration policies for polluted soils. For this purpose, eight heavy metals (As, Cd, Hg, Cr, Cu, Ni, Pb, and Zn) in soil profile samples (0–10, 10–20, 20–30, and 30–40?cm) collected in the area around aluminum-plastic manufacturing facilities (APMF) were determined. An absolute principal component score multiple linear regression (APCS-MLR) model supported by a health risk assessment (HRA) model was developed to determine the source apportionment of soil heavy metals and contribution rate of pollution sources to human health risk. Results showed significant accumulations of eight metals in the topsoil (0–20?cm), parent material, transportation, APMF, and agricultural practices were the four major contributing sources for heavy metals in soils, with average contribution percentages of 21.69%, 24.99%, 29.60%, and 14.25%, respectively. Carcinogenic risk factors for adults (1.23E-04) and children (1.32E-04) were found to be above the acceptable level (1E-06 to 1E-04). The health risk quantification results indicated that parent material, APMF, transportation, agricultural practices, and unidentified factors accounted for 55.76%, 14.48%, 12.09%, 10.13%, and 7.54% of the carcinogenic risk for children and adults. The adverse impacts of Cd, Zn, and Pb accumulations in soil coming from APMF activities were significant and need to receive more attention.  相似文献   

12.
Manganese mining activities in the Drama district, northern Greece, have resulted in a legacy of abandoned mine wastes at the “25 km Mn-mine” site. Current research was focused on the western Drama plain (WDP), constituting the recipient of the effluents from Xiropotamos stream, which passes through the “25 km Mn-mine” place. A total of 148 top soil samples were collected and their heavy metals (HMs) concentrations (Mn, Pb, Zn, Cu, Cd, and As) were determined using inductively coupled plasma mass spectrometry. Enrichment factor (EF), geoaccumulation index (Igeo), and pollution load index (PLI) were calculated as an effort to assess metal accumulation, distribution, and pollution status of the soils due to the former mining activity. The overall potential ecological risk of HMs to the environment was also evaluated using the potential toxicity response index (RI). Results showed that peak values of the elements (13 wt% for Mn, 0.2 wt% for Pb, 0.2 wt% for Zn, 0.1 wt% for As, 153 mg/kg for Cu, and 27.5 mg/kg for Cd) were found in soils from sites close to and along both sides of the Xiropotamos stream. In this sector of WDP, values of EF, Igeo, and PLI classify the soils as moderately to highly polluted with Mn, Pb, Zn, Cd, and As. Based on RI values, soils in this part of WDP display considerable to very great potential ecological risk and, therefore, a remediation has to be applied. The main cause of soil contamination is considered the Xiropotamos downstream transfer and dispersion of Mn mine wastes via flooding episodes.  相似文献   

13.
The pollution and potential health risk due to lifetime exposure to heavy metals in urban soil of China were evaluated, based on the urban soil samples collected from published papers from 2005 to 2014. The contamination levels were in the order of Cd > Hg > Cu > Zn > Pb >As > Ni > Cr, and Hg and Cd fell into the category of “moderately contaminated” to “heavily contaminated.” The non-carcinogenic risk for different populations varied greatly, among which children faced high risk, and then the adult female and adult male followed. The hazard index (non-carcinogenic risk) higher than 1.00 occurred in Shanghai, Gansu, Qinghai, Hunan, and Anhui, whereas most of those in northern and western China had low risks. For the carcinogenic risk, Anhui and Ningxia provinces had urban soils exceeding the safe reference (1 × 10?6–1 × 10?4). Qinghai and Gansu had high carcinogenic risks since their risk indexes were much closer to the reference, and the others were in low risk.  相似文献   

14.
山东省部分水岸带土壤重金属含量及污染评价   总被引:23,自引:0,他引:23  
为了解山东省水岸带土壤重金属的含量特征和污染状况,于2010年9月—10月采集了39个水岸带土壤样品,分析了土壤中Cr、Co、Ni、Cu、Zn、Cd、Pb和Hg的含量以及土壤的pH值、粒度和有机质,采用单因子指数法、综合指数法和潜在生态危害指数法对水岸带土壤重金属污染进行了评价,并利用相关分析和聚类分析对其来源进行了初步的解析。结果表明:水岸带土壤的pH值为5.67—8.66,主要呈碱性;有机质的平均含量为9.39 g/kg,土壤粒度主要以砂粒和粉粒为主,其平均体积百分比分别为50.33%和38.48%,平均粒径为89.69 μm;Cr、Co、Ni、Cu、Zn、Cd、Pb和Hg的平均含量为53.03 mg/kg、10.33 mg/kg、24.96 mg/kg、18.38 mg/kg、56.13 mg/kg、0.142 mg/kg、22.48 mg/kg和0.020 mg/kg。各水岸带土壤重金属的含量均符合《土壤环境质量标准》(GB15618-1995)二级标准。以山东省土壤元素背景值为评价标准,水岸带土壤重金属总体表现为轻度污染和轻微生态风险,其中Cd和Hg是主要的污染因子,其对潜在生态危害指数的平均贡献率分别为46.8% 和33.6%。洙赵新河、廖河、门楼水库和东平湖水岸带土壤重金属污染及潜在生态危害明显高于其他水源地。源解析的结果表明:水岸带土壤重金属的含量受自然源和人为源的双重影响,人为源主要包括地表径流、工业废气、垃圾和交通运输等。  相似文献   

15.
Shengting Rao  Jia Fang  Keli Zhao 《Phyton》2022,91(12):2669-2685

Soil is an essential resource for agricultural production. In order to investigate the pollution situation of heavy metals in the soil-crop system in the e-waste dismantling area, the crop and soil samples (226 pairs, including leaf vegetables, solanaceous vegetables, root vegetables, and fruits) around the e-waste dismantling area in southeastern Zhejiang Province were collected. The concentrations of Cd, Cu, Pb, and Cr were determined. The average concentrations of Cd, Cu, Pb, and Cr in soils were 0.94, 107.79, 80.28, and 78.14 mg kg-1, respectively, and their corresponding concentrations in crops were 0.024, 0.7, 0.041, and 0.06 mg kg-1, respectively. The transfer capacity of leaf vegetables was significantly higher than that of non-leaf vegetables, and the accumulation of four heavy metals in crops tended to be Cd > Cu > Cr/Pb. The pollution index’s results revealed that the soil pollution degree under different land uses ranked as root vegetables soil > leaf vegetables soil > solanaceous vegetables soil > fruit soil. The carcinogenic and non-carcinogenic risks of heavy metal exposure were ranked as food intake > accidental ingestion > dermal contact > inhalation. The comprehensive non-carcinogenic risk was ranked as Cr > Cd > Pb/Cu. Our results could be used to provide useful information for further crop cultivation layout in the study area, which can guarantee the local residents’ health and food safety.

  相似文献   

16.
To identify sources of heavy metal(loid) (HM) contamination in agricultural soils of Huzhou, surface soil samples were sampled from 89 different agricultural regions in 2012. Concentrations of heavy metal(loid)s, along with pH, total phosphorus (TP), total nitrogen (TN), and soil organic matter (SOM), were determined. Ecological risk was then assessed using a modified Hakanson ecological risk index, and the sources of contamination were determined using principal component analysis (PCA). Mean concentrations of heavy metal(loid)s were 10.26, 23.21, 83.75, 22.81, 0.25, 61.86, 33.03, and 0.15 mg kg?1 for As, Cu, Zn, Ni, Cd, Cr, Pb, and Hg, respectively. Cu, Zn, Ni, Cr, Cd, Hg, and Pb were correlated positively with TP and there were obvious positive correlations among Cu, Zn, Ni, Cr, and Cd. Risk index (RI) values varied from 39 to 1246 with a mean value of 137. Enrichment of Pb, Zn, Cu, and especially Cd can be attributed to excessive use of nitrogen and phosphorus fertilizers containing heavy metals, as well to surface irrigation and natural soil formation. While the ecological risk of most agricultural soils in Huzhou is low, it is recommended that the use of phosphate and nitrogen fertilizers be restricted and production technology be improved to reduce the heavy metal(loid) concentrations. Results suggest that the Chinese environmental quality standard for soil should be revised to better address heavy metal(loid) contamination.  相似文献   

17.
The objective of this study is the evaluation of health risk of heavy metals in soils of urban community gardens of Baghdad City in Iraq. The soil samples were collected from 14 community gardens and analyzed for Cd, Cr, Cu, Ni, Pb and Zn. The non-carcinogenic hazard index (HI) and carcinogenic risk index (RI) were utilized to evaluate human health risk of heavy metals. The health hazard evaluation showed that there is no non-carcinogenic hazard in light of the fact that the HI values were beneath the threshold value (HI < 1). The HI for children and adults has a descending order of Cd < Cr < Cu < Ni < Pb < Zn. The carcinogenic RI values for Cd, Cr and Ni were over the unacceptable threshold value (RI < 1 × 10?4), demonstrating that there is a serious carcinogenic risk for children and adults in the study area. The carcinogenic RI for children and adults has a descending order of Cr < Cd < Ni. These findings give environment administrators and leaders data on whether therapeutic activities are required to decrease exposure.  相似文献   

18.
Food, drinking water, soil, and air are the main routes of exposure to trace metals, thus the assessment of the risks posed to humans by these elements is important. Wheat, potatoes, and maize are very important parts of the Iranian diet. The objectives of this study were to estimate the non-carcinogenic and carcinogenic health risks of Hg, Pb, Cd, Cr, Se, As, and Ni to adults and children via soil, water, and major food crops consumed in Hamedan Province, northwest Iran, using the total non-cancer hazard quotient (THQ) and cancer risk assessment estimates. Total non-cancer hazard of Ni and Hg, were greater than 1, and total cancer risk of As and Pb was greater than 1 × 10?6. Food consumption was identified as the major route of human exposure to metals, and consuming foodstuff threatens the health of the studied population. In Hamedan Province, consumption of wheat is the main source of intake of metals from foodstuff for adults, and in children, the soil ingestion route is also important.  相似文献   

19.
贵州兴仁煤矿区农田土壤重金属化学形态及风险评估   总被引:2,自引:0,他引:2  
为了解煤矿区周边农田土壤重金属污染状况,采集了贵州省兴仁县某典型煤矿区农田土壤样品64份,测定了土样中重金属(As、Cr、Pb、Zn、Cd、Hg、Cu、Ni)总量及各形态含量,采用单因子指数法、潜在生态风险指数法(Hkanson法)和风险评估编码法(RAC)对研究区主要土壤利用类型(水稻土、薏米地、植烟土和菜园土)中重金属进行潜在生态风险评估和环境风险评价.结果表明: 不同利用类型土壤中重金属含量除Zn外,其他元素均明显超过贵州省背景值.单因子指数法评价结果表明,As、Pb、Hg和Cu污染较为严重,均属重度污染.形态分析表明,土壤中重金属形态构成差异明显,酸可提取态As、酸可提取态Cd所占比例较高;Cr、Zn、Cu、Ni主要以残渣态为主;Pb主要以可还原态和残渣态为主;而Hg的酸可提取态、可还原态、可氧化态均占有相当比例,三者之和大于55%.重金属可利用度大小顺序为:As(63.6%)>Hg(57.3%)>Cd(56.4%)>Pb(52.5%)>Cu(45.7%)>Zn(32.8%)>Ni(26.2%)>Cr(13.2%).潜在生态风险指数表明,各类型土壤潜在生态风险(RI)〖JP2〗为:菜园土(505.19)>薏米地(486.06)>植烟土(475.33)>水稻土(446.86),均处于较高风险.风险评估编码法结果显示,As在水稻土、薏米地及植烟土中均处于高风险,在菜园土中处于中等风险;Cd、Hg均处于中等风险,Cr、Pb、Zn、Cu和Ni均处于低风险.因此,对该区域农田土壤进行管控时应重点考虑As、Cd和Hg污染.  相似文献   

20.
A study on identification of hotspots, spatial patterns, and risk evaluation of heavy metals in urban soils of Malayer city (Iran) was carried out. Fifty-nine composite surface soil samples were collected from six different land uses (urban parks, streets, and squares, boulevards, residential and agricultural areas) in Malayer city, and the total heavy metals were measured by atomic absorption spectroscopy. Average concentrations of Cd, Pb, Cu, and Zn, As, Cd, and Pb were 0.66, 15.51, 12.25, and 96.8 mg/kg, respectively. Among the six land uses, heavy metal contamination was heavier for street, while low contamination could be found for residential and urban parks. The spatial distribution of Pb in surface soil was similar to those of Cd, and Cu was similar to those of Zn with decreasing values from the central areas to the suburb. Also, there were several hotspots for studied heavy metals that Cd and Pb were mainly occurred in locations of heavy traffic in the city center and Cu and Zn in the west and northwestern in the city. The calculated result of risk evaluation showed that much of the city suffered from moderate to severe pollution by four of these heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号