首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Aims: To characterize the bacterial communities in commercial total mixed ration (TMR) silage, which is known to have a long bunk life after silo opening. Methods and Results: Samples were collected from four factories that produce TMR silage according to their own recipes. Three factories were sampled three times at 1‐month intervals during the summer to characterize the differences between factories; one factory was sampled 12 times, three samples each during the summer, autumn, winter and spring, to determine seasonal changes. Bacterial communities were determined by culture‐independent denaturing gradient gel electrophoresis. All silages contained lactic acid as the predominant acid, and the contents appeared stable regardless of factories and product seasons. Acetic acid and 1‐propanol contents were different between factories and indicated seasonal changes, with increases in warm seasons compared to cool seasons. Both differences and similarities existed among the bacterial communities from each factory and product season. Lactobacillus parabuchneri was found in the products from three of four factories. Various sourdough lactic acid bacteria (LAB) were identified in commercial TMR silage; Lactobacillus panis, Lactobacillus hammesii, Lactobacillus mindensis, Lactobacillus pontis, Lactobacillus frumenti and Lactobacillus farciminis were detected in many products. Moreover, changes owing to product season were distinctive, and Lact. pontis and Lact. frumenti became detectable in summer products. Conclusion: Sourdough LAB are involved in the ensiling of commercial TMR silage. Silage bacterial communities vary more by season than by factory. The LAB species Lact. parabuchneri was detected in the TMR silage but may not be essential to the product’s long bunk life after silo opening. Significance and Impact of the Study: Commercial TMR silage resembles sourdough with respect to bacterial communities and long shelf life. The roles of sourdough LAB in the ensiling process and aerobic stability are worth examining.  相似文献   

3.
Co-culture of Lactobacillus brevis subsp. lindneri or L. plantarum with Saccharomyces cerevisiae or S. exiguus from sourdough did not modify the yield of the yeasts but gave higher growth rates and final yields of both lactic acid bacteria (LAB) than in their respective mono-cultures. Co-cultures of L. brevis subsp. lindneri with S. cerevisiae or S. exiguus in a medium without valine or leucine, which are essential for growth of the LAB, led to growth of the LAB due to excretion of these amino acids by the yeasts.The authors are with the Institute of Dairy Microbiology, Faculty of Agriculture, University of Perugia, Via S. Costanzo, 06100 Perugia, Italy  相似文献   

4.
5.
AIMS: To evaluate the effectiveness of two independent methods in differentiating a large population of lactic acid bacteria (LAB) isolated from wheat flours and sourdoughs and to correlate eventual differences/similarities among strains with their geographical origin and/or process parameters. METHODS AND RESULTS: One hundred fifty strains belonging to Lactobacillus spp. and Weissella spp., plus eight type strains, one for each species, and two unidentified isolates, were characterized by randomly amplified polymorphic DNA (RAPD) and SDS-PAGE of cell-wall proteins. The RAPD analysis separated the eight type strains but did not always assign all the strains of a species to the same group, while SDS-PAGE cell-wall protein profiles were species-specific. Frequently, strains isolated from sourdoughs of the same geographical origin or produced by similar raw material/process parameters showed similar RAPD and/or cell-wall profiles. CONCLUSIONS: The combined use of the RAPD and cell-wall protein analysis represents a useful tool to classify large adventitious microbial populations and to discriminate the diversity of the strains. SIGNIFICANCE AND IMPACT OF THE STUDY: This study represents a typing of a large collection of flour/sourdough LAB and provides evidence of the advantage of using two independent methods in the classification and traceability of microorganisms.  相似文献   

6.
Aims: The present work tests the feasibility of the isothermal microcalorimetry method to study the performance of individual lactic acid bacteria during solid‐state fermentation in rye sourdough. Another aim was to elucidate the key factors leading to the formation of different microbial consortia in laboratory and industrial sourdough during continuous backslopping propagation. Methods and Results: Strains of the individual LAB isolated from industrial and laboratory sourdough cycle were grown in 10 kGy irradiated rye dough in vials of an isothermal calorimeter and the power–time curves were obtained. Sugars, organic acids and free amino acids in the sourdough were measured. The OD–time curves of the LAB strains during growth in flour extract or MRS (De Man, Rogosa and Sharpe) broth were also determined. The maximum specific growth rates of Lactobacillus sakei, Lactobacillus brevis, Lactobacillus curvatus and Leuconostoc citreum strains that dominated in backslopped laboratory sourdough were higher than those of Lactobacillus helveticus, Lactobacillus panis, Lactobacillus vaginalis, Lactobacillus casei and Lactobacillus pontis strains originating from industrial sourdough. Industrial strains had higher specific growth rates below pH 4·8. It was supposed that during long‐run industrial backslopping processes, the oxygen sensitive species start to dominate because of the O2 protective effect of rye sourdough. Conclusions: Measurements of the power–time curves revealed that the LAB strains dominating in the industrial sourdough cycle had better acid tolerance but lower maximum growth rate and oxygen tolerance than species isolated from a laboratory sourdough cycle. Significance and Impact of the Study: Isothermal microcalorimetry combined with chemical analysis is a powerful method for characterization of sourdough fermentation process and determination of growth characteristics of individual bacteria in sourdough.  相似文献   

7.
Lactic acid-producing bacteria are important in many fermentations, such as the production of biobased plastics. Insight in the competitive advantage of lactic acid bacteria over other fermentative bacteria in a mixed culture enables ecology-based process design and can aid the development of sustainable and energy-efficient bioprocesses. Here we demonstrate the enrichment of lactic acid bacteria in a controlled sequencing batch bioreactor environment using a glucose-based medium supplemented with peptides and B vitamins. A mineral medium enrichment operated in parallel was dominated by Ethanoligenens species and fermented glucose to acetate, butyrate and hydrogen. The complex medium enrichment was populated by Lactococcus, Lactobacillus and Megasphaera species and showed a product spectrum of acetate, ethanol, propionate, butyrate and valerate. An intermediate peak of lactate was observed, showing the simultaneous production and consumption of lactate, which is of concern for lactic acid production purposes. This study underlines that the competitive advantage for lactic acid-producing bacteria primarily lies in their ability to attain a high biomass specific uptake rate of glucose, which was two times higher for the complex medium enrichment when compared to the mineral medium enrichment. The competitive advantage of lactic acid production in rich media can be explained using a resource allocation theory for microbial growth processes.  相似文献   

8.
AIMS: The aim of this study was to identify potential souring agents, isolated from fermented plant material, by API 50 CHL assay and a molecular method based on polymerase chain reaction and colorimetric hybridization (PCR-ELISA). METHODS AND RESULTS: Forty-two strains of lactic acid bacteria derived from plant material were screened by taking advantage of API 50 CHL and PCR-ELISA. Oligonucleotide probes used for hybridization in PCR-ELISA were specific for lactobacilli, the Leuconostoc family, Lactobacillus pentosus/plantarum and Lactobacillus brevis. The hybrides were detected by a colour-developing reaction. Bacteria isolated from fermented cucumbers were identified as Lact. plantarum-related (Lact. plantarum and Lact. pentosus) and Leuconostoc species. Most of the strains isolated from sauerkraut were identified as Lact. pentosus/plantarum. CONCLUSIONS: Complementary results were obtained in the identification of bacterial strains, isolated from fermented cucumbers and sauerkraut, by API 50 CHL and PCR-ELISA. SIGNIFICANCE AND IMPACT OF THE STUDY: PCR-ELISA proved to be suitable for the screening of large numbers of bacterial isolates from fermented vegetables. This will be useful for the identification of strains suitable for the design of starter cultures for the fermentation of plant material.  相似文献   

9.
At the end of culture in a carbon-limited medium, i.e. the best conditions for subsequent autolysis, lactic acid bacteria were harvested and autolysed at 50 °C for 24 h. The resulting supernatant was then successfully tested as a substitute for industrial yeast extract for the supplementation of whey permeate and its conversion into lactic acid: for almost equivalent total nitrogen amounts of both supplements, the same growth and production rates were recorded.  相似文献   

10.
AIMS: Isolation, characterization and identification of lactic acid bacteria (LAB) from artisanal Zlatar cheese during the ripening process and selection of strains with good technological characteristics. METHODS AND RESULTS: Characterization of LAB was performed based on morphological, physiological and biochemical assays, as well as, by determining proteolytic activity and plasmid profile. rep-polymerase chain reaction (PCR) analysis and 16S rDNA sequencing were used for the identification of LAB. PCR analysis was performed with specific primers for detection of the gene encoding nisin production. Strains Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Enterococcus faecium and Enterococcus faecalis were the main groups present in the Zlatar cheese during ripening. CONCLUSIONS: Temporal changes in the species were observed during the Zlatar cheese ripening. Mesophilic lactobacilli are predominant microflora in Zlatar cheese. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study we determined that Zlatar cheese up to 30 days old could be used as a source of strains for the preparation of potential starter cultures in the process of industrial cheese production. As the Serbian food market is adjusting to European Union regulations, the standardization of Zlatar cheese production by using starter culture(s) based on autochtonous well-characterized LAB will enable the industrial production of this popular cheese in the future.  相似文献   

11.
AIMS: To apply a denaturing gradient gel electrophoretic (DGGE) method to quantify and profile individual strains during a mixed culture fermentation. METHODS AND RESULTS: DNA was extracted during the culture of lactic acid bacteria (LAB) and amplified in a multiple competitive PCR (cPCR) using general primers targeting 16S rDNA and DNA from Streptococcus salivarius as competitive DNA. Subsequently the 200-kb amplified fragments were separated by DGGE. The method was validated in pure cultures and used to profile a mixture of three LAB grown on glucose, soluble starch and glycogen from mussel processing waste. The inclusion of a starch- and glycogen-degrading strain (Lactobacillus plantarum) and a weakly amylotic nisin-resistant strain (Lact. paracasei) allowed proliferation of the nisin producing Lactococcus lactis which in itself is unable to grow on complex carbohydrates. cPCR-DGGE permitted the monitoring of a different strain succession on the different carbohydrates, related to amylolytic activity and substrate consumption, acid production and nisin production. CONCLUSIONS: cPCR-DGGE is a useful tool for profiling defined mixed cultures of bacteria and hence allows their interaction to be studied. SIGNIFICANCE AND IMPACT OF THE STUDY: Provided validation of the method for each specific case, it may be appropriate to monitor and control the reproducibility of any defined mixed culture of bacteria, with the advantage that an increase in the strain numbers to be monitored does not yield an increase in the labour of the procedure.  相似文献   

12.
Aims: This study aimed at characterizing the lactic acid bacteria microbiota and selecting mixed endogenous starters to be used for sourdough fermentation of spelt or emmer flours. Methods and Results: Identification of lactic acid bacteria was carried out by partial sequencing of the 16S rRNA, recA, 16S/23S rRNA spacer region and pheS genes. Spelt flour showed the largest biodiversity, while Lactobacillus plantarum dominated in emmer flour. Isolates were subjected to RAPD‐PCR analysis and screened based on the kinetics of growth and acidification, quotient of fermentation and liberation of free amino acids (FAA) during sourdough fermentation. After selection, mixed starters were used according to a two‐step fermentation process. Wheat flour was fermented by the same starters. Spelt and emmer sourdoughs had slightly higher pH than wheat sourdoughs but titratable acidity, concentration of FAA and phytase activity were higher. Specific volume and crumb grain of emmer and, especially, spelt breads approached those of wheat breads. Sensory analysis confirmed the suitability of spelt and emmer for bread making. Conclusions: The sourdough biotechnology was indispensable to completely exploit the potential of spelt and emmer flours. Significance and Impact of the Study: Results filled up the lack of knowledge on the lactic acid bacteria microbiota and technological performances of spelt and emmer flours.  相似文献   

13.
AIMS: To verify to what degree reducing capacity is a characterizing parameter of a species, and of the strains themselves within a given species, of lactic acid bacteria. METHODS AND RESULTS: Eighty-eight strains belonging to 10 species of lactic acid bacteria (LAB) isolated from traditional Italian cheeses were studied for their reduction activity: Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, Streptococcus thermophilus, Lactococcus lactis ssp. lactis, Lactobacillus paracasei ssp. paracasei, Lactobacillus plantarum, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus helveticus and Pediococcus pentosaceus. It was observed that the lactococci reached minimum redox potential before the lactobacilli. The reduction rate of Enterococcus spp. and L. lactis ssp. lactis was higher than that of the streptococci and Lactobacillus spp. All the P. pentosaceus strains had poor reduction activity compared with the other species. CONCLUSIONS: The evolution of the redox potential in milk over a time span of 24 h has been found to be a parameter that characterizes a species: the different courses corresponding to the species in question are clearly evident, and interesting differences can also be noted within the same species. SIGNIFICANCE AND IMPACT OF THE STUDY: The reduction aptitude of strains might be used to select and adapt appropriate strains for use as starters for dairy products.  相似文献   

14.
Aims:  To investigate the circulation of predominant sourdough lactic acid bacteria (LAB) species in the production environment of two Belgian artisan sourdough bakeries.
Methods and Results:  Isolates were collected from sourdoughs, flour, hands of the baker and air in the bakery setting and taxonomically characterized using repetitive element sequence-based PCR fingerprinting, pheS and/or 16S rRNA gene sequencing and amplified fragment length polymorphism (AFLP) analysis. In parallel, PCR-DGGE (denaturing gradient gel electrophoresis) analysis of V3-16S rDNA amplicons was applied to visualize the predominant bacterial population in the sourdoughs and the corresponding bakery environment (flour, hands of the baker, air and bakery equipment). Both approaches revealed that sourdoughs produced at D01 and D10 were mainly dominated by Lactobacillus spicheri and L. plantarum and by L. sanfranciscensis , respectively, and that these LAB species also circulated in the corresponding bakery environment. Furthermore, AFLP fingerprinting demonstrated that sourdough and bakery environment isolates of these species were genetically indistinguishable. For more sensitive source-tracking, SYBR Green-based real-time PCR assays were developed using species-specific primers targeting the pheS gene of L. plantarum and L. sanfranciscensis, detected in air samples from D01 and D10, respectively.
Conclusions:  The results obtained in this study indicate that specific strains of LAB persist in artisan doughs over years and circulate in the bakery environment. Furthermore, the importance of air as a potential carrier of LAB in artisan bakery environments was demonstrated.
Significance and Impact of the Study:  PheS -based real-time PCR can be used to detect, quantify and/or monitor specific LAB species (e.g. starter cultures) in sourdough and bakery environment samples.  相似文献   

15.
AIMS: Considering the significant rise in the probiotic market in Columbia, and given the lack of reports concerning the microbial population and strain performance in products from different producers, this study aims at determining the number of viable starter bacteria and probiotics in bio-yoghurts available at the Columbian market, identifying the species and analysing the performance of the isolated strains in bile acid resistance, antagonistic activity against pathogens, and adherence capacity to human intestinal epithelial cells. METHODS AND RESULTS: Seven bio-yoghurts were analysed for the bacterial species present. Species identification was carried out using 16S rRNA gene targeted PCR. The cultured bacteria were tested for bile acid resistance, adherence to a human intestinal epithelial cell line, and antagonism against the pathogen Salmonella enterica serovar Typhimurium. A total of 17 different strains were identified. Based on plate counting, all bio-yoghurts have at least total viable cells of approximately 10(7) CFU ml(-1). Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus were the most frequently isolated bacteria. Viable Bifidobacterium was only recovered from one product. However, after PCR analysis, DNA of this genus was confirmed in five out of seven products. Major differences were found for S. typhimurium antagonism. The adherence capacity to Caco-2 cells was observed in 10 of the isolated strains. In general, low survival to simulated gastric juice was observed. CONCLUSIONS: Some of the isolated strains have probiotic potential, although not all of them were present in the advised amount to exert beneficial health effects. However, the full correct scientific name of the isolated bacteria and their viable counts were not included on the product label. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report describing the identification and functionality of starter bacteria and probiotics present in dairy products on the Columbian market.  相似文献   

16.
Lactic acid bacteria (LAB) are found to occupy a variety of ecological niches including fermented foods as well as mucosal surfaces of humans and other vertebrates. This review is based on the genomic content of LAB that is responsible for the functional and ecological diversity of these bacteria. These genomes reveal an ongoing process of reductive evolution as the LAB have specialized to different nutritionally rich environments. Species-to-species variation in the number of pseudogenes as well as genes directing nutrient uptake and metabolism reflects the adaptation of LAB to food matrices and the gastrointestinal tract. Although a general trend of genome reduction was observed, certain niche-specific genes appear to be recently acquired and appear on plasmids or adjacent to prophages. Recent work has improved our understanding of the genomic content responsible for various phenotypes that continue to be discovered, as well as those that have been exploited by man for thousands of years.  相似文献   

17.
Aims:  The present study focuses on the impact of two different drying technologies and the influence of protectants on process survival and storage stability of the two lactic acid bacterial strains Enterococcus faecium and Lactobacillus plantarum .
Methods and Results:  After incubation with the protectants glucose, sucrose, trehalose, and maltodextrin the concentrated bacterial suspensions were subjected to fluidized bed drying and lyophilization and subsequently stored at 4, 22, and 35°C for half a year. Lactobacillus plantarum turned out to be more sensitive to both drying methods than Ent. faecium . Without the addition of a protectant cells of both strains suffered higher losses during fluidized bed drying. Elevated storage temperatures correlate with a higher decline of viable bacterial cells.
Conclusions:  Although survival rates varied between the strains, the nonreducing disaccharides revealed overall best protection for both investigated lactic acid bacteria during processing and storage. The addition of protective carbohydrates can prevent the decline in viability during fluidized bed drying.
Significance and Impact of the Study:  The influence of protectants proved to be species specific and therefore needs to be determined on a case-to-case basis. Survival rates, duration, and energy consumption appear to be the crucial parameters to evaluate the economy of production processes for industrial starter cultures.  相似文献   

18.
19.
The mechanisms of cell-cell communication in Lactobacillus sanfranciscensis CB1 were studied. The highest number of dead/damaged cells of L. sanfranciscensis CB1 was found in cocultures with Lactobacillus plantarum DC400 or Lactobacillus brevis CR13 when the late stationary phase of growth (18 h) was reached. 2-DE analysis was carried out. Almost the same proteins were induced in all three cocultures at the mid-exponential phase of growth (7 h). The number of induced proteins markedly increased at 18 h, especially when L. sanfranciscensis CB1 was cocultured with L. plantarum DC400 or L. brevis CR13. Nineteen overexpressed proteins were identified. These proteins had a central role in stress response mechanisms and LuxS-mediated signalling was involved in the regulation of most of them. The luxS and metF genes were partially sequenced in L. sanfranciscensis CB1. RT-PCR showed that the expression of luxS gene decreased from 7 to 12 h. It was highest in cocultures with L. plantarum DC400 and L. brevis CR13. 2(3H)dihydrofuranone-5ethyl and 2(3H)dihydrofuranone-5pentyl were identified as presumptive signalling molecules when L. sanfranciscensis CB1 was cocultured with L. brevis CR13 and, especially, L. plantarum DC400. The synthesis of other volatile compounds and peptidase activities were also influenced by the type of microbial cocultures.  相似文献   

20.
Peptidases and amino acid catabolism in lactic acid bacteria   总被引:28,自引:0,他引:28  
The conversion of peptides to free amino acids and their subsequent utilization is a central metabolic activity in prokaryotes. At least 16 peptidases from lactic acid bacteria (LAB) have been characterized biochemically and/or genetically. Among LAB, the peptidase systems of Lactobacillus helveticus and Lactococcus lactis have been examined in greatest detail. While there are homologous enzymes common to both systems, significant differences exist in the peptidase complement of these organisms. The characterization of single and multiple peptidase mutants indicate that these strains generally exhibit reduced specific growth rates in milk compared to the parental strains. LAB can also catabolize amino acids produced by peptide hydrolysis. While the catabolism of amino acids such as Arg, Thr, and His is well understood, few other amino acid catabolic pathways from lactic acid bacteria have been characterized in significant detail. Increasing research attention is being directed toward elucidating these pathways as well as characterizing their physiological and industrial significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号