首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
A procedure was developed for real-time measurement of the interaction between an archaeal TATA-binding protein (TBP) with stress-gene promoters from the archaeon Methanosarcina mazeii using surface plasmon resonance (SPR), the BIACORE 3000 equipment, and the SA (streptavidin) Sensor Chip. Measurements were based on the SPR optical phenomenon, which resulted in light extinction when TBP bound a promoter. This process, detected as a change in a particular angle, was recorded in a sensorgram. The BIA-evaluation program allowed the calculation of the equilibrium constant (K(A)) of the interaction of M. mazeii TBP with the promoters of the stress genes grpE, hsp70(dnaK), and hsp40(dnaJ) (0.47, 0.26, and 1.21x10(7)M(-1), respectively) and, for comparison, with the promoter of a non-heat-shock gene, orf16 (0.08x10(7)M(-1)). The association rate (k(a)) of the non-heat-shock gene orf16 was 0.4x10(4)M(-1)s(-1) and those for the stress genes, grpE, hsp70(dnaK), and hsp40(dnaJ) were higher: 2.8, 1.5, and 3.5x10(4)M(-1)s(-1), respectively. The new procedure will allow a comparative analysis of different TPBs and promoters (wild type and mutants) under physiologic and stress conditions, and a correlation of TBP binding parameters with constitutive and stress-induced gene expression.  相似文献   

7.
Targeted disruption of hsp70.1 sensitizes to osmotic stress   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

8.
9.
10.
11.
12.
13.
The Hsp70 molecular chaperone machine is constituted by the 70-kDa heat shock protein Hsp70 (DnaK), cochaperone protein Hsp40 (DnaJ) and a nucleotide-exchange factor GrpE. Although it is one of the best-characterized molecular chaperone machines, little is known about it in archaea. A 5.2-kb region containing the hsp70 (dnaK) gene was cloned from Natrinema sp. J7 strain and sequenced. It contained the Hsp70 chaperone machine gene locus arranged unidirectionally in the order of grpE, hsp70 and hsp40 (dnaJ). The hsp70 gene from Natrinema sp. J7 was overexpressed in Escherichia coli BL21 (DE3). The recombinant Hsp70 protein was in a soluble and active form, and its ATPase activity was optimally active in 2.0 M KCl, whereas NaCl had less effect. In vivo, the haloarchaeal hsp70 gene allowed an E. coli dnak-null mutant to propagate lambda phages and grow at 42 degrees C. The results suggested that haloarchaeal Hsp70 should be beneficial for extreme halophiles survival in low-salt environments.  相似文献   

14.
The hsp70(dnaK) locus of the moderate thermophilic archaeon Methanosarcina thermophila TM-1 was cloned, sequenced, and tested in vitro to measure gene induction by heat and ammonia, i.e., stressors pertinent to the biotechnological ecosystem of this methanogen that plays a key role in anaerobic bioconversions. The locus' genes and organization, 5'-grpE-hsp70(dnaK)-hsp40 (dnaJ)-trkA-3', are the same as those of the closely related mesophile Methanosarcina mazei S-6, but different from those of the only other archaeon for which comparable sequence data exist, the thermophile Methanobacterium thermoautotrophicum deltaH, from another genus, in which trkA is not part of the locus. The proteins encoded in the TM-1 genes are very similar to the S-6 homologs, but considerably less similar to the deltaH proteins. The TM-1 Hsp70(DnaK) protein has the 23-amino acid deletion--by comparison with homologs from gram-negative bacteria first described in the S-6 molecule and later found to be present in all homologs from archaea and gram positives. The genes responded to a temperature elevation in a manner that demonstrated that they are heat-shock genes, functionally active in vivo. Ammonia also induced a heat-shock type of response by hsp70(dnaK), and a similar response by trkA. The data suggest that the moderate thermophile TM-1 has an active Hsp70(DnaK)-chaperone machine in contrast to hyperthermophilic archaea, and that trkA is a stress gene, inasmuch as it responds like classic heat-shock genes to stressors that induce a typical heat-shock response.  相似文献   

15.
Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana   总被引:3,自引:0,他引:3       下载免费PDF全文
The Arabidopsis genome contains at least 18 genes encoding members of the 70-kilodalton heat shock protein (Hsp70) family, 14 in the DnaK subfamily and 4 in the Hsp110/SSE subfamily. While the Hsp70s are highly conserved, a phylogenetic analysis including all members of this family in Arabidopsis and in yeast indicates the homology of Hsp70s in the subgroups, such as those predicted to localize in the same subcellular compartment and those similar to the mammalian Hsp110 and Grp170. Gene structure and genome organization suggest duplication in the origin of some genes. The Arabidopsis hsp70s exhibit distinct expression profiles; representative genes of the subgroups are expressed at relatively high levels during specific developmental stages and under thermal stress.  相似文献   

16.
17.
18.
19.
Pulmonate land snails often are able to estivate to survive dry hot seasons were water and food are scarce. The aperture of the shell is closed with an epiphragm, and metabolism is depressed to approximately one fourth of basal metabolism. We investigated a molecular aspect of estivation focussing on the heat shock protein 70 (Hsp70) stress response during estivation in the Mediterranean Grunt Snail Cantareus apertus. Sequences of a new inducible hsp70 and of actin are presented and expression of the hsp70 gene as well as Hsp70 protein content was measured in estivating animals. Both Hsp70 protein and mRNA do not show a significant change from the control, although there is a trend that hsp70 mRNA is less abundant in estivating specimens. After heat shock, the expression of hsp70 increased and a higher Hsp70 protein content was detected. Water relations were also investigated. After a period of 6 months in the dormant state, the snails contained 14% less water than active ones, implying a constricted protection against desiccation, compared to the desert snail Sphincterochila zonata, and a Mediterranean-type water economy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号