首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunolocalization studies in epithelial cells revealed myo6 was associated with peripherally located vesicles that contained the transferrin receptor. Pulse-chase experiments after transferrin uptake showed that these vesicles were newly uncoated endocytic vesicles and that myo6 was recruited to these vesicles immediately after uncoating. GIPC, a putative myo6 tail binding protein, was also present. Myo6 was not present on early endosomes, suggesting that myo6 has a transient association with endocytic vesicles and is released upon early endosome fusion. Green fluorescent protein (GFP) fused to myo6 as well as the cargo-binding tail (M6tail) alone targeted to the nascent endocytic vesicles. Overexpression of GFP-M6tail had no effect on a variety of organelle markers; however, GFP-M6tail displaced the endogenous myo6 from nascent vesicles and resulted in a significant delay in transferrin uptake. Pulse-chase experiments revealed that transferrin accumulated in uncoated vesicles within the peripheries of transfected cells and that Rab5 was recruited to the surface of these vesicles. Given sufficient time, the transferrin did traffic to the perinuclear sorting endosome. These data suggest that myo6 is an accessory protein required for the efficient transportation of nascent endocytic vesicles from the actin-rich peripheries of epithelial cells, allowing for timely fusion of endocytic vesicles with the early endosome.  相似文献   

2.
Young SP 《FEBS letters》2000,466(1):135-138
A comparison of the effects of inhibitors of membrane fusion on the uptake of asialoglycoprotein and transferrin by primary rat hepatocytes was made. This showed that while high potassium medium inhibited the degradation but not the uptake of asialoorosomucoid, both transferrin endocytosis and iron delivery to the cells were unaffected. This difference between the two pathways was also observed with an inhibitor of phospholipase A2, bromophenacyl bromide. With the latter, it was found that the asialoglycoproteins failed to traverse from a low-density to a high-density intracellular compartment, implying a role for phospholipase A2 in the trafficking of asialoglycoprotein receptor but not that for transferrin or iron. This demonstrates that, after its release from transferrin, iron is transported to the cytoplasm directly from the early endosome without the need for fusion of the iron-containing vesicle with a lysosome.  相似文献   

3.
To investigate the potential role of phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P2) in the regulation of actin polymerization and GLUT4 translocation, the type I phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) were expressed in 3T3L1 adipocytes. In preadipocytes (fibroblasts) PIP5K expression promoted actin polymerization on membrane-bound vesicles to form motile actin comets. In contrast, expression of PIP5K in differentiated 3T3L1 adipocytes resulted in the formation of enlarged vacuole-like structures coated with F-actin, cortactin, dynamin, and N-WASP. Treatment with either latrunculin B (an inhibitor for actin polymerization) or Clostridium difficile toxin B (a general Rho family inhibitor) resulted in a relatively slower disappearance of coated F-actin from these vacuoles, but the vacuoles themselves remained unaffected. Functionally, the increased PI(4,5)P2 levels resulted in an inhibition of transferrin receptor and GLUT4 endocytosis and a slow accumulation of these proteins in the PI(4,5)P2-enriched vacuoles along with the non-clathrin-derived endosome marker (caveolin) and the AP-2 adaptor complex. However, these structures were devoid of early endosome markers (EEA1, clathrin) and the biosynthetic membrane secretory machinery markers p115 (Golgi) and syntaxin 6 (trans-Golgi Network). Taken together, these data demonstrate that PI(4,5)P2 has distinct morphologic and functional properties depending upon specific cell context. In adipocytes, altered PI(4,5)P2 metabolism has marked effects on GLUT4 endocytosis and intracellular vesicle trafficking due to the derangement of actin dynamics.  相似文献   

4.
Clathrin-coated vesicle endocytosis and macropinocytosis are distinct endocytic pathways demonstrable in several cell types including human epidermoid A431 cells (West, M.A., M.S. Bretscher, and C. Watts. 1989. J. Cell Biol. 109:2731-2739). Here we analyze the extent of mixing of macropinocytic endosome (macropinosome) content with that of conventional endosomes served by coated vesicle endocytosis. Using laser scanning confocal fluorescence microscopy we detected very little delivery of macropinosome content to either early or late endosomes- lysosomes as defined by labeling with transferrin or with LDL. Mixing of the contents of the macropinosomes and conventional endosomes was not induced by the addition of brefeldin A. Moreover, the morphology of macropinosomes was not grossly altered in the presence of brefeldin A, whilst in the same cells there were dramatic tubulation effects on conventional endosomes as reported by others. Although refractory to fusion with conventional endosomes, macropinosomes were nonetheless dynamic structures which sometimes exhibited vesiculo-tubular morphology in living cells and were capable of fusing with each other. We suggest that different endocytic mechanisms can give rise to distinct endosome populations.  相似文献   

5.
Viruses may infect cells through clathrin-dependent, caveolin-dependent, or clathrin- and caveolin-independent endocytosis. Bovine papillomavirus type 1 (BPV1) entry into cells has been shown to occur by clathrin-dependent endocytosis, a pathway that involves the formation of clathrin-coated pits and fusion to early endosomes. Recently, it has been demonstrated that the closely related JC virus can enter cells in clathrin-coated vesicles and subsequently traffic to caveolae, the organelle where vesicles of the caveolin-dependent pathway deliver their cargo. In this study, we use immunofluorescence staining of BPV1 pseudovirions to show that BPV1 overlaps with the endosome marker EEA1 early during infection and later colocalizes with caveolin-1. We provide evidence through the colocalization of BPV1 with transferrin and cholera toxin B that BPVl trafficking may not be restricted to the clathrin-dependent pathway. Disrupting the entry of caveolar vesicles did not affect BPV1 infection; however, we show that blocking the caveolar pathway postentry results in a loss of BPV1 infection. These data indicate that BPV1 may enter by clathrin-mediated endocytosis and then utilize the caveolar pathway for infection, a pattern of trafficking that may explain the slow kinetics of BPV1 infection.  相似文献   

6.
Regulation of myosin-VI targeting to endocytic compartments   总被引:4,自引:1,他引:3  
Myosin-VI has been implicated in endocytic trafficking at both the clathrin-coated and uncoated vesicle stages. The identification of alternative splice forms led to the suggestion that splicing defines the vesicle type to which myosin-VI is recruited. In contrast to this hypothesis, we find that in all cell types examined, myosin-VI is associated with uncoated endocytic vesicles, regardless of splice form. GIPC, a PDZ-domain containing adapter protein, co-assembles with myosin-VI on these vesicles. Myosin-VI is only recruited to clathrin-coated vesicles in cells that express high levels of Dab2, a clathrin-binding adapter protein. Overexpression of Dab2 is sufficient to reroute myosin-VI to clathrin-coated pits in cells where myosin-VI is normally associated with uncoated vesicles. In normal rat kidney (NRK) cells, which express high endogenous levels of Dab2, splicing of the globular tail domain further modulates targeting of ectopically expressed myosin-VI. Although myosin-VI can be recruited to clathrin-coated pits, we find no requirement for myosin-VI motor activity in endocytosis in NRK cells. Instead, our data suggest that myosin-VI recruitment to clathrin-coated pits may be an early step in the recruitment of GIPC to the vesicle surface.  相似文献   

7.
Actin remodeling to facilitate membrane fusion   总被引:1,自引:0,他引:1  
Actin and its associated proteins participate in several intracellular trafficking mechanisms. This review assesses recent work that shows how actin participates in the terminal trafficking event of membrane bilayer fusion. A recent flurry of reports defines a role for Rho proteins in membrane fusion and also demonstrates that this role is distinct from any vesicle transport mechanism. Rho proteins are well known to govern actin remodeling, which implicates this process as a condition of membrane fusion. A small but significant body of work examines actin-regulated events of intracellular membrane fusion, exocytosis and endocytosis. In general, actin has been shown to act as a negative regulator of exocytosis. Cortical actin filaments act as a barrier that requires transient removal to allow vesicles to undergo docking at the plasma membrane. However, once docked, F-actin synthesis may act as a positive regulator to give the final stimulus to drive membrane fusion. F-actin synthesis is clearly needed for endocytosis and intracellular membrane fusion events. What may seem like dissimilar results are perhaps snapshots of a single mechanism of membranous actin remodeling (i.e. dynamic disassembly and reassembly) that is universally needed for all membrane fusion events.  相似文献   

8.
Myosin VI is a minus-end directed actin-based molecular motor implicated in uncoated endocytic vesicle transport. Recent kinetic studies have shown that myosin VI displays altered ADP release kinetics under different load conditions allowing myosin VI to serve alternately as a transporter or as an actin tether. We theorized that one potential regulatory event to modulate between these kinetic choices is phosphorylation at a conserved site, threonine 406 (T406) in the myosin VI motor domain. Alterations mimicking the phosphorylated (T406E) and dephosphorylated state (T406A) were introduced into a GFP-myosin VI fusion (GFP-M6). Live cell imaging revealed that GFP-M6(T406E) expression changed the path myosin VI took in its transport of uncoated endocytic vesicles. Rather than routing vesicles inwards as seen in GFP-M6 and GFP-M6(T406A) expressing cells, GFP-M6(T406E) moved vesicles into clusters at distinct peripheral sites. GFP-M6(T406E) expression also increased the density of the actin cytoskeleton. Filaments were enriched at the vesicle cluster sites. This was not due to a gross redistribution of the actin polymerization machinery. Instead the filament density correlated to the fixed positioning of GFP-M6(T406E)-associated vesicles on F-actin, leading to inhibition of actin depolymerization. Our study suggests that phosphorylation at T406 changes the nature of myosin VI's interaction with actin in vivo.  相似文献   

9.
MYO2 encodes a type V myosin heavy chain needed for the targeting of vacuoles and secretory vesicles to the growing bud of yeast. Here we describe new myo2 alleles containing conditional lethal mutations in the COOH-terminal tail domain. Within 5 min of shifting to the restrictive temperature, the polarized distribution of secretory vesicles is abolished without affecting the distribution of actin or the mutant Myo2p, showing that the tail has a direct role in vesicle targeting. We also show that the actin cable-dependent translocation of Myo2p to growth sites does not require secretory vesicle cargo. Although a fusion protein containing the Myo2p tail also concentrates at growth sites, this accumulation depends on the polarized delivery of secretory vesicles, implying that the Myo2p tail binds to secretory vesicles. Most of the new mutations alter a region of the Myo2p tail conserved with vertebrate myosin Vs but divergent from Myo4p, the myosin V involved in mRNA transport, and genetic data suggest that the tail interacts with Smy1p, a kinesin homologue, and Sec4p, a vesicle-associated Rab protein. The data support a model in which the Myo2p tail tethers secretory vesicles, and the motor transports them down polarized actin cables to the site of exocytosis.  相似文献   

10.
Actin assembly nucleated by Arp2/3 complex has been implicated in the formation and movement of endocytic vesicles. The dendritic nucleation model has been proposed to account for Arp2/3-mediated actin assembly and movement. Here, we explored the model by examining the role of capping protein in vivo, with quantitative tracking analysis of fluorescence markers for different stages of endocytosis in yeast. Capping protein was most important for the initial movement of endocytic vesicles away from the plasma membrane, which presumably corresponds to vesicle scission and release. The next phase of endosome movement away from the plasma membrane was also affected, but less so. The results are consistent with the dendritic nucleation model's prediction of capping protein as important for efficient actin assembly and force production. In contrast, the movement of late-stage endocytic vesicles, traveling through the cytoplasm en route to the vacuole, did not depend on capping protein. The movement of these vesicles was found previously to depend on Lsb6, a WASp interactor, whereas Lsb6 was found here to be dispensable for early endosome movement. Thus, the molecular requirements for Arp2/3-based actin assembly differ in early versus later stages of endocytosis. Finally, acute loss of actin cables led to increased patch motility.  相似文献   

11.
Current models for sorting in the endosomal compartment suggest that endosomal geometry plays a significant role as membrane-bound proteins accumulate in tubular regions for recycling, and lumenal markers accumulate in large vacuolar portions for delivery to lysosomes. Rab5, a small molecular weight GTPase, functions in the formation and maintenance of the early/sorting endosome. Overexpression of the constitutively active form, Rab5(Q79L), leads to enhanced endosome fusion resulting in the enlargement of early endosomes. Using an adenoviral expression system to regulate the time and level of Rab5(Q79L) overexpression in HeLa cells, we find that although endosomes are dramatically enlarged, the rates of transferrin receptor-mediated endocytosis and recycling are unaffected. Moreover, despite the enlarged endosome phenotype, neither the rate of internalization of a fluid phase marker nor the rate of recycling of a bulk lipid marker were affected. These results suggest that GTP hydrolysis by Rab5 is rate-limiting for endosome fusion but not for endocytic trafficking and that early endosome geometry may be a less critical determinant of sorting efficiencies than previously thought.  相似文献   

12.
The fusion of transport vesicles with their cognate target membranes, an essential event in intracellular membrane trafficking, is regulated by SNARE proteins and Rab GTPases. Rab GTPases are thought to act prior to SNAREs in vesicle docking, but the exact biochemical relationship between the two classes of molecules is not known. We recently identified the early endosomal autoantigen EEA1 as an effector of Rab5 in endocytic membrane fusion. Here we demonstrate that EEA1 interacts directly and specifically with syntaxin-6, a SNARE implicated in trans-Golgi network to early endosome trafficking. The binding site for syntaxin-6 overlaps with that of Rab5-GTP at the C terminus of EEA1. Syntaxin-6 and EEA1 were found to colocalize extensively on early endosomes, although syntaxin-6 is present in the trans-Golgi network as well. Our results indicate that SNAREs can interact directly with Rab effectors, and suggest that EEA1 may participate in trans-Golgi network to endosome as well as in endocytic membrane traffic.  相似文献   

13.
The plasma membrane (PM) and its associated cargo are internalized into small vesicles via endocytosis funneling cargo into endosomes. The endosomal system must efficiently deliver cargos, as well as recycle cargo receptors and membrane to maintain homeostasis. In animal cells, endosome trafficking, maturation, and cargo recycling rely on the actin and microtubule cytoskeleton. Microtubules and their associated motor proteins provide the roads on which endosomes move and fuse during cargo sorting and delivery. In addition, highly dynamic assemblies of actin adjust the shape of the endosomal membrane to promote cargo segregation into budding domains allowing for receptor recycling. Recent work has revealed that the endoplasmic reticulum (ER) frequently acts as an intermediary between endosomes and their cytoskeletal regulators via membrane contact sites (MCSs). This review will discuss the factors which form these tripartite junction between the ER, endosomes, and the cytoskeleton as well as their function.  相似文献   

14.
Cell-cell fusion is a fundamental cellular process that is essential for development as well as fertilization. Myoblast fusion to form multinucleated skeletal muscle myotubes is a well studied, yet incompletely understood example of cell-cell fusion that is essential for formation of contractile skeletal muscle tissue. Studies in this report identify several novel cytoskeletal events essential to an early phase of myoblast fusion among cultured murine myoblasts. During myoblast pairing and alignment, cortical actin filaments organize into a dense actin wall structure that parallels and extends the length of the plasma membrane of the bipolar, aligned cells. As fusion progresses, gaps appear within the actin wall at sites of vesicle accumulation, the vesicles pair across the aligned myoblasts, cell-cell contacts and fusion pores form. Inhibition of nonmuscle myosin IIA (NM-MHC-IIA) motor activity prevents formation of this cortical actin wall, as well as the appearance of vesicles at a membrane proximal location, and myoblast fusion. These results suggest that early formation of a subplasmalemmal actin wall during myoblast alignment is a critical event for myoblast fusion that supports bipolar membrane alignment and temporally regulates trafficking of vesicles to the nascent fusion sites during skeletal muscle myoblast differentiation.  相似文献   

15.
Summary The uptake and pathway of different markers and ligands for fluid-phase, adsorptive and receptor mediated endocytosis were analyzed in the epithelial cells lining the rete testis after their infusion into the lumen of these anastomotic channels. At 2 min after injection, diferric transferrin bound to colloidal gold was seen attached to the apical plasma membrane and to the membrane of endocytic coated and uncoated pits and vesicles. The injection of transferrin-gold in the presence of a 100-fold excess of unconjugated diferric transferrin revealed no binding or internalization of transferrin-gold. Similarly, apotransferrin-gold was neither bound to the apical plasma membrane nor internalized by these cells. These results thus indicate the presence of specific binding sites for diferric transferrin. At 5 min, internalized diferric transferrin-gold reached endosomes. At 15 and 30 min, the endosomes were still labeled but at these time intervals the transferrin-gold also appeared in tubular elements connected to or associated with these bodies or seen in close proximity to the apical plasma membrane. At 60 and 90 min, most of the transferrin-gold was no longer present in these organelles and was seen only exceptionally in secondary lysosomes. These results thus suggest that the tubular elements may be involved in the recycling of transferrin back to the lumen of the rete testis. The coinjection of transferrin-gold and the fluid-phase marker native ferritin revealed that both proteins were often internalized in the same endocytic pit and vesicle and shared the same endosome. However, unlike transferrin, native ferritin at the late time intervals appeared in dense multivesicular bodies and secondary lysosomes. When the adsorptive marker cationic ferritin and the fluid-phase marker albumin-gold were coinjected, again both proteins often shared the same endocytic pit and vesicle, endosome, pale and dense multivesicular body and secondary lysosomes. However, several endocytic vesicles labeled only with cationic ferritin appeared to bypass the endosomal and lysosomal compartments and to reach the lateral intercellular space and areas of the basement membrane. The rete epithelial cells, therefore, appear to be internalizing proteins and ligands by receptor-mediated and non-specific endocytosis which, after having shared the same endocytic vesicle and endosome, appear to be capable of being segregated and routed to different destinations.  相似文献   

16.
During constitutive endocytosis, internalized membrane traffics through endosomal compartments. At synapses, endocytosis of vesicular membrane is temporally coupled to action potential-induced exocytosis of synaptic vesicles. Endocytosed membrane may immediately be reused for a new round of neurotransmitter release without trafficking through an endosomal compartment. Using GFP-tagged endosomal markers, we monitored an endosomal compartment in Drosophila neuromuscular synapses. We showed that in conditions in which the synaptic vesicles pool is depleted, the endosome is also drastically reduced and only recovers from membrane derived by dynamin-mediated endocytosis. This suggests that membrane exchange takes place between the vesicle pool and the synaptic endosome. We demonstrate that the small GTPase Rab5 is required for endosome integrity in the presynaptic terminal. Impaired Rab5 function affects endo- and exocytosis rates and decreases the evoked neurotransmitter release probability. Conversely, Rab5 overexpression increases the release efficacy. Therefore, the Rab5-dependent trafficking pathway plays an important role for synaptic performance.  相似文献   

17.
Cortical actin patches are dynamic structures required for endocytosis in yeast. Recent studies have shown that components of cortical patches localize to the plasma membrane in a precisely orchestrated manner, and their movements at and away from the plasma membrane may define the endocytic membrane invagination and vesicle scission events, respectively. Here, through live-cell imaging, we analyze the dynamics of the highly conserved class I unconventional myosin, Myo5, which also localizes to cortical patches and is known to be involved in endocytosis and actin nucleation. Myo5 exhibits a pattern of dynamic localization different from all cortical patch components analyzed to date. Myo5 associates with cortical patches only transiently and remains stationary during its brief cortical lifespan. The peak of Myo5 association with cortical patches immediately precedes the fast movement of Arp2/3 complex-associated structures away from the plasma membrane, thus correlating precisely with the proposed vesicle scission event. To further test the role of Myo5, we generated a temperature-sensitive mutant myo5 allele. In the myo5 mutant cells, Myo5 exhibits a significantly extended cortical lifespan as a result of a general impairment of Myo5 function, and Arp2 patches exhibit an extended slow-movement phase prior to the fast movement toward the cell interior. The myo5 mutant cells are defective in fluid-phase endocytosis and exhibit an increased number of invaginations on the membrane. Based on these results, we hypothesize that the myosin I motor protein facilitates the membrane fusion/vesicle scission event of endocytosis.  相似文献   

18.
ADP-ribosylation factor 6 (Arf6) is a small-GTPase that regulates the membrane trafficking between the plasma membrane and endosome. It is also involved in the reorganization of the actin cytoskeleton. GTPase-activating protein (GAP) is a critical regulator of Arf function as it inactivates Arf. Here, we identified a novel species of GAP denoted as SMAP1 that preferentially acts on Arf6. Although overexpression of SMAP1 did not alter the subcellular distribution of the actin cytoskeleton, it did block the endocytosis of transferrin receptors. Knock down of endogenous SMAP1 also abolished transferrin internalization, which confirms that SMAP1 is needed for this endocytic process. SMAP1 overexpression had no effect on clathrin-independent endocytosis, however. Intriguingly, SMAP1 binds directly to the clathrin heavy chain via its clathrin-box and mutation studies revealed that its GAP domain and clathrin-box both contribute to the role SMAP1 plays in clathrin-dependent endocytosis. These observations suggest that SMAP1 may be an Arf6GAP that specifically regulates one of the multiple functions of Arf6, namely, clathrin-dependent endocytosis, and that it does so by binding directly to clathrin.  相似文献   

19.

Background

Epithelial barrier dysfunction is associated with the pathogenesis of a number of immune inflammations; the etiology is not fully understood. The fusion of endosome/lysosome is a critical process in the degradation of endocytic antigens in epithelial cells. Recent reports indicate that myosin VI (myo6) is involved in the activities of endosomes. The present study aims to investigate the role of myo6 in epithelial barrier dysfunction.

Results

The endosome accumulation was observed in myo6-deficient Rmcs. More than 80% endosomes were fused with lysosomes in naïve Rmcs while less than 30% endosomes were fused with lysosomes in the myo6-deficient Rmcs. The myo6-deficient Rmc monolayers showed high permeability to a macromolecular antigen, ovalbumin, the latter still conserved the antigenicity, which induced strong T cell activation.

Conclusions

We conclude that myo6 plays a critical role in the fusion of endosome/lysosome in Rmc epithelial cells. Deficiency of myo6 compromises the epithelial barrier function.  相似文献   

20.
The intra-erythrocytic stages of the malaria parasite endocytose large quantities of the surrounding erythrocyte cytoplasm and deliver it to a digestive food vacuole via endocytic vesicles. Digestion provides amino acids for parasite protein synthesis and is required to maintain the osmotic integrity of the host cell. The parasite endocytic pathway has been described morphologically by electron microscopy, but the molecular mechanisms that mediate and regulate it remain elusive. Given the involvement of actin in endocytosis in other eukaryotes, we have used actin inhibitors to assess the requirement for this protein in the endocytic pathway of the human malaria parasite, Plasmodium falciparum . Treatment of cultures with cytochalasin D did not affect haemoglobin levels in the parasites when co-administered with protease inhibitors, and neither did it affect the uptake of the endocytic tracer horseradish peroxidase, suggesting the absence of actin in the mechanism of endocytosis. However, in the absence of protease inhibitors, treated parasites contained increased levels of haemoglobin due to an accumulation of enlarged endocytic vesicles, as determined by immunofluorescence and electron microscopy, suggesting a role for actin in vesicle trafficking, possibly by mediating vesicle maturation and/or fusion to the digestive vacuole. In contrast to cytochalasin D, treatment with jasplakinolide led to an inhibition of endocytosis, an accumulation of vesicles closer to the plasma membrane and a marked concentration of actin in the parasite cortex. We propose that the stabilization of cortical actin filaments by jasplakinolide interferes with normal endocytic vesicle formation and migration from the cell periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号