共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomerase has fundamental roles in bypassing cellular aging and in cancer progression by maintaining telomere homeostasis and integrity. However, recent studies have led some investigators to suggest novel biochemical properties of telomerase in several essential cell signaling pathways without apparent involvement of its well established function in telomere maintenance. These observations may further enhance our understanding of the molecular actions of telomerase in aging and cancer. This review will provide an update on the extracurricular activities of telomerase in apoptosis, DNA repair, stem cell function, and in the regulation of gene expression. 相似文献
2.
Replication timing of DNA sequences associated with human centromeres and telomeres. 总被引:10,自引:3,他引:10 下载免费PDF全文
K G Ten Hagen D M Gilbert H F Willard S N Cohen 《Molecular and cellular biology》1990,10(12):6348-6355
The timing of replication of centromere-associated human alpha satellite DNA from chromosomes X, 17, and 7 as well as of human telomeric sequences was determined by using density-labeling methods and fluorescence-activated cell sorting. Alpha satellite sequences replicated late in S phase; however, the alpha satellite sequences of the three chromosomes studied replicated at slightly different times. Human telomeres were found to replicate throughout most of S phase. These results are consistent with a model in which multiple initiations of replication occur at a characteristic time within the alpha satellite repeats of a particular chromosome, while the replication timing of telomeric sequences is determined by either telomeric origins that can initiate at different times during S phase or by replication origins within the flanking chromosomal DNA sequences. 相似文献
3.
4.
Restoration of telomeres in human papillomavirus-immortalized human anogenital epithelial cells. 总被引:19,自引:4,他引:19 下载免费PDF全文
A J Klingelhutz S A Barber P P Smith K Dyer J K McDougall 《Molecular and cellular biology》1994,14(2):961-969
Loss of telomeres has been hypothesized to be important in cellular senescence and may play a role in carcinogenesis. In this study, we have measured telomere length in association with the immortalization and transformation of human cervical and foreskin epithelial cells by the human papillomavirus type 16 or 18 E6 and E7 open reading frames. By using a telomeric TTAGGG repeat probe, it was shown that the telomeres of precrisis normal and E6-, E7-, and E6/E7-expressing cells gradually shortened with passaging (30 to 100 bp per population doubling). Cells that expressed both E6 and E7 went through a crisis period and gave rise to immortalized lines. In contrast to precrisis cells, E6/E7-immortalized cells generally showed an increase in telomere length as they were passaged in culture, with some later passage lines having telomeres that were similar to or longer than the earliest-passage precrisis cells examined. No consistent association could be made between telomere length and tumorigenicity of cells in nude mice. However, of the three cell lines that grew in vivo, two had long telomeres, thus arguing against the hypothesis that cancer cells favor shortened telomeres. Our results indicate that arrest of telomere shortening may be important in human papillomavirus-associated immortalization and that restoration of telomere length may be advantageous to cells with regard to their ability to proliferate. 相似文献
5.
人类造血细胞的端粒—端粒酶的研究进展 总被引:2,自引:0,他引:2
端粒和端粒酶是近年来生命科学的研究热点之一,端粒酶与肿瘤密切相关,作为特殊的肿瘤标记,已成为抗肿瘤治疗的新靶点。由于造血干细胞的特性,对正常及恶性造血细胞进行端粒-端粒酶的研究可为进一步探讨正常造血细胞的增殖、分化、成熟和凋亡的调控机制,以及恶性血液肿瘤的发病机理提供理论依据,为临床诊断和抗癌治疗提供新的思路和策略。 相似文献
6.
Sala-Trepat M Rouillard D Escarceller M Laquerbe A Moustacchi E Papadopoulo D 《Experimental cell research》2000,260(2):208-215
Fanconi anemia (FA) is an inherited cancer-susceptibility disorder, characterized by genomic instability, hypersensitivity to DNA cross-linking agents, and a prolonged G2 phase of the cell cycle. We observed a marked dose-dependent accumulation of FA cells in the G2 compartment after treatment with 4,5',8-trimethylpsoralen (Me(3)Pso) in combination with 365 nm irradiation. Using bivariate DNA distribution methodology, we determined the proportion of replicating and arresting S-phase cells and observed that, whereas normal cells arrested DNA replication in the presence of Me(3)Pso cross-links and monoadducts, FA lymphoblasts failed to arrest DNA synthesis. Taken together, the above data suggest that, in response to damage induced by DNA cross-linking agents, the S-phase checkpoint is inefficient in FA cells. This would lead to accumulation of secondary lesions, such as single- and double-strand breaks and gaps. The prolonged time in G2 phase seen in FA cells therefore exists in order to allow the cells to remove lesions which accumulated during the preceding abnormal S phase. 相似文献
7.
Replication of repeated DNA in human cells 总被引:1,自引:0,他引:1
The replication pattern of the repeated sequence families of human DNA has been studied by means of DNA reassociation curves. Early- and late-replicating DNA fractions were obtained from synchronized cultures of KB cells by labeling cells with bromodeoxyuridine (BUdR) early or late in the DNA synthesis period and isolating the BUdR-containing DNA by CsCl density-gradient centrifugation. Highly repeated and moderately repeated sequence classes labeled with either early or late in the DNA synthesis period were also prepared. The effect of the isolated early- or late-replicating BUdR-DNA on the rate of reassociation of the repeated sequences was then tested. Increasing concentrations of early- or late-replicating BUdR-DNA were added to a constant amount of either early- or late-replicating repeated sequences, and the fraction of label in double-stranded DNA was determined. Analysis of the DNA reassociation curves so obtained indicates that some repeated sequence families are replicated throughout the DNA synthesis period whereas others are replicated primarily in the second half. This is true for both the highly-repeated and moderately-repeated sequence classes. 相似文献
8.
Replicative senescence is accompanied by a telomere-specific DNA damage response (DDR). We found that DDR+ telomeres occur spontaneously in early-passage normal human cells and increase in number with increasing cumulative cell divisions. DDR+ telomeres at replicative senescence retain TRF2 and RAP1 proteins, are not associated with end-to-end fusions and mostly result from strand-independent, postreplicative dysfunction. On the basis of the calculated number of DDR+ telomeres in G1-phase cells just before senescence and after bypassing senescence by inactivation of wild-type p53 function, we conclude that the accrual of five telomeres in G1 that are DDR+ but nonfusogenic is associated with p53-dependent senescence. 相似文献
9.
Cycloheximide (1.0 ug/ml) reversibly induced a 1.7-fold increase in the distribution of cells in S phase and a 0.9-fold decrease in G1 phase in DNA histograms of human salivary adenocarcinoma cells (HSG). At this time, cycloheximide inhibited the synthesis of proteins by HSG cells and secretion of proteins in the media to 28.1% and 9% of the control values, respectively, which resulted in the almost complete arrest of cell reproduction. This indicates that HSG cells can pass through G1 to S phase even under the conditions of the arrest of protein synthesis. 相似文献
10.
Yunling Zheng Fan Zhang Bing Sun Juan Du chongkui sun Jie Yuan 《Cell cycle (Georgetown, Tex.)》2014,13(11):1765-1776
Telomere lengths are tightly regulated within a narrow range in normal human cells. Previous studies have extensively focused on how short telomeres are extended and have demonstrated that telomerase plays a central role in elongating short telomeres. However, much about the molecular mechanisms of regulating excessively long telomeres is unknown. In this report, we demonstrated that the telomerase enzymatic component, hTERT, plays a dual role in the regulation of telomere length. It shortens excessively long telomeres and elongates short telomeres simultaneously in one cell, maintaining the optimal telomere length at each chromosomal end for efficient protection. This novel hTERT-mediated telomere-shortening mechanism not only exists in cancer cells, but also in primary human cells. The hTERT-mediated telomere shortening requires hTERT’s enzymatic activity, but the telomerase RNA component, hTR, is not involved in that process. We found that expression of hTERT increases telomeric circular DNA formation, suggesting that telomere homologous recombination is involved in the telomere-shortening process. We further demonstrated that shelterin protein TPP1 interacts with hTERT and recruits hTERT onto the telomeres, suggesting that TPP1 might be involved in regulation of telomere shortening. This study reveals a novel function of hTERT in telomere length regulation and adds a new element to the current molecular model of telomere length maintenance. 相似文献
11.
12.
13.
14.
Bethan Britt-Compton 《FEBS letters》2009,583(18):3076-89
Short telomeres have been shown to be preferentially elongated in both yeast and mouse models. We examined this in human cells, by utilising cells with large allelic telomere length differentials and observing the relative rates of elongation following the expression of hTERT. We observed that short telomeres are gradually elongated in the first 26 PDs of growth, whereas the longer telomeres displayed limited elongation in this period. Telomeres coalesced at similar lengths irrespective of their length prior to the expression of hTERT. These data indicate that short telomeres are marked for gradual elongation to a cell strain specific length threshold. 相似文献
15.
Replication protein A prevents accumulation of single-stranded telomeric DNA in cells that use alternative lengthening of telomeres 总被引:2,自引:0,他引:2
Grudic A Jul-Larsen A Haring SJ Wold MS Lønning PE Bjerkvig R Bøe SO 《Nucleic acids research》2007,35(21):7267-7278
The activation of a telomere maintenance mechanism is required for cancer development in humans. While most tumors achieve this by expressing the enzyme telomerase, a fraction (5–15%) employs a recombination-based mechanism termed alternative lengthening of telomeres (ALT). Here we show that loss of the single-stranded DNA-binding protein replication protein A (RPA) in human ALT cells, but not in telomerase-positive cells, causes increased exposure of single-stranded G-rich telomeric DNA, cell cycle arrest in G2/M phase, accumulation of single-stranded telomeric DNA within ALT-associated PML bodies (APBs), and formation of telomeric aggregates at the ends of metaphase chromosomes. This study demonstrates differences between ALT cells and telomerase-positive cells in the requirement for RPA in telomere processing and implicates the ALT mechanism in tumor cells as a possible therapeutic target. 相似文献
16.
Tsung-Po Lai Simon Verhulst Sharon A. Savage Shahinaz M. Gadalla Athanase Benetos Simon Toupance Pam Factor-Litvak Ezra Susser Abraham Aviv 《Aging cell》2023,22(6):e13844
Telomere length (TL) limits somatic cell replication. However, the shortest among the telomeres in each nucleus, not mean TL, is thought to induce replicative senescence. Researchers have relied on Southern blotting (SB), and techniques calibrated by SB, for precise measurements of TL in epidemiological studies. However, SB provides little information on the shortest telomeres among the 92 telomeres in the nucleus of human somatic cells. Therefore, little is known about the accumulation of short telomeres with age, or whether it limits the human lifespan. To fill this knowledge void, we used the Telomere-Shortest-Length-Assay (TeSLA), a method that tallies and measures single telomeres of all chromosomes. We charted the age-dependent buildup of short telomeres (<3 kb) in human hematopoietic cells from 334 individuals (birth-89 years) from the general population, and 18 patients with dyskeratosis congenita-telomere biology disorders (DC/TBDs), whose hematopoietic cells have presumably reached or are close to their replicative limit. For comparison, we also measured TL with SB. We found that in hematopoietic cells, the buildup of short telomeres occurs in parallel with the shortening with age of mean TL. However, the proportion of short telomeres was lower in octogenarians from the general population than in patients with DC/TBDs. At any age, mean TL was longer and the proportion of short telomeres lower in females than in males. We conclude that though converging to the TL-mediated replicative limit, hematopoietic cell telomeres are unlikely to reach this limit during the lifespan of most contemporary humans. 相似文献
17.
Replication of chromosomal and episomal DNA in X-ray-damaged human cells: a cis- or trans-acting mechanism? 总被引:4,自引:0,他引:4
Episomal plasmids and viruses in mammalian cells present small targets for X-ray-induced DNA damage. At doses up to 100 Gy, DNA strand breaks or endonuclease III-sensitive sites were not discernible in 10.3-kb Epstein-Barr virus-based plasmid DNA or in 4.9-kb defective simian virus 40 DNA. DNA replication in these small molecules, however, was inhibited strongly by X-ray doses of greater than or equal to 20 Gy, decreasing to only 20 to 40% of control values. Inhibition was relieved slightly by growth in caffeine but was increased by growth in 3-aminobenzamide. Inhibition of DNA replication in episomal DNA molecules that are too small to sustain significant damage directly to their DNA may be due to either (a) a trans-acting diffusible factor that transfers the consequences of DNA breakage to episomes and to other replicating molecules, (b) a cis-acting mechanism in which episomes are structurally linked to genomic chromatin, and replication of both episomal and chromosomal replicons is under common control, or (c) radiation damage on other cellular structures unrelated to DNA. The resolution of these cellular mechanisms may shed light on the X-ray-resistant replication in ataxia-telangiectasia and may suggest strategies for molecular characterization of potential trans- or cis-acting factors. 相似文献
18.
19.
20.
Normal human fibroblasts, serially passaged in vitro, demonstrated decreasing synthesis of ribosomal RNA (rRNA). Senescent and pre-senescent WI38 cells were fused with one another in order to study age-related factors affecting the production of nucleolar RNA. Autoradiograms revealed that the young nucleus of a dichronic heterokaryon (2 nuclei of different ages) had an impaired ability to produce nucleolar RNA, while the young nucleus of a monochrome heterokaryon (2 nuclei of the same age) was not affected. Old nuclei of dichronic heterokaryons, and old monochronic heterokaryons displayed the same nucleolar RNA synthesis rate as did their single, unfused counterparts. 相似文献