首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for determining the plate height HETP from the elution curve obtained by the linear gradient elution (LGE) ion-exchange chromatography (IEC) of proteins is presented. The method was developed on the basis of the numerical solutions of a chromatography model which considers the zone sharpening and the distribution coefficient as a function of the salt concentration. The plate height HETP is determined from the peak width and the salt concentration at which the peak is eluted in LGE. The method was applied to the experimental results with various ion-exchange chromatography media. A calculation example based onthe present method is presented to show how the chromatographic and operating parameters should be tuned to obtain a desired resolution. A simplified calculation procedure for the peak profile is also described. (c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
To analyze the influence of the beta-subunit on the kinetic properties of GlyR channel currents, alpha(1)-subunits and alpha(1)beta-subunits were transiently expressed in HEK 293 cells. A piezo dimorph was used for fast application of glycine to outside-out patches. The rise time of activation was dose dependent for both receptors and decreased with increasing glycine concentrations. Subunit composition had no effect on the time course of activation. Coexpression of alpha(1)- and beta-subunits resulted in a significantly lower EC(50) and a reduced slope of the dose-response curve of glycine compared with expression of alpha(1)-subunits alone. For both receptor subtypes, the time course of desensitization was concentration dependent. Desensitization was best fitted with a single time constant at 10-30 micro M, with two at 0.1 mM, and at saturating concentrations (0.3-3 mM) with three time constants. Desensitization of homomeric alpha(1)-receptor channels was significantly slower than that of alpha(1)beta-receptor channels. The time course of current decay after the end of glycine pulses was tested at different pulse durations of 1 mM glycine. It was best fitted with two time constants for both alpha(1) and alpha(1)beta GlyR channels, and increased significantly with increasing pulse duration.  相似文献   

3.
13C NMR studies of glycogen turnover in the perfused rat liver   总被引:5,自引:0,他引:5  
To assess whether hepatic glycogen is actively turning over under conditions which promote net glycogen synthesis we perfused livers from 24-h fasted rats with 20 mM D-[1-13C]glucose, 10 mM L-[3-13C]alanine, 10 mM L-[3-13C]lactate, and 1 microM insulin for 90 min followed by a 75-min "chase" period with perfusate of the same composition containing either 13C-enriched or unlabeled substrates. The peak height of the C-1 resonance of the glucosyl subunits in glycogen was monitored, in real time, using 13C NMR techniques. During the initial 90 min the peak height of the C-1 resonance of glycogen increased at almost a constant rate reflecting a near linear increase in net glycogen synthesis, which persisted for a further 75 min if 13C-enriched substrates were present during the "chase" period. However, when the perfusate was switched to the unenriched substrates, the peak height of the C-1 resonance of glycogen declined in a nearly linear manner reflecting active glycogenolysis during a time of net glycogen synthesis. By comparing the slopes of the curve describing the time course of the net [1-13C] glucose incorporation into glycogen with the rate of net loss of 13C label from the C-1 resonance of glycogen during the "chase" period we estimated the relative rate of glycogen breakdown to be 60% of the net glycogen synthetic rate. Whether this same phenomenon occurs to such an appreciable extent in vivo remains to be determined.  相似文献   

4.
Factors influencing plasma progesterone concentration were investigated in seven mares. Two-phase logistic curves were fitted (r=0.98) to plasma progesterone concentrations of blood samples collected once daily. In addition to the effect of time (P<0.001), there were differences (P<0.01) among mares in the peak height of the progesterone plateau and in the (area under the curve) AUC. Plasma progesterone concentrations were higher (P<0.001) after a multiple versus single ovulation. There was an effect of season (P<0.001), but no significant effect of luteal morphology. The retrospective determination of time of ovulation was carried out using a linear model on the seven mares and 25 additional mares. Linear regression on the measured values or on the ratio to the average concentration from D5 to D10, was calculated with the day of cycle between D0 and D4. The ovulation date was then calculated using both of these equations, whether blood sampling was performed twice or thrice weekly on 25 postpartum mares. The accuracy to predict day of ovulation (+/- 1 day) ranged from 88 to 97%. In conclusion, the retrospective estimation of time of ovulation in mares was possible, although the technique had some limitations.  相似文献   

5.
On the flexibility of myosin in solution.   总被引:1,自引:0,他引:1  
J F Curry  S Krause 《Biopolymers》1991,31(14):1677-1687
Rabbit skeletal muscle myosin from the same rabbit was prepared by two different methods, and then purified by either Sephadex or hydroxylapatite chromatography. The resulting myosin samples were analyzed in 2-10 mM sodium pyrophosphate solutions at pH 9 using transient electric birefringence. The birefringence decay signals were fitted using a Fortran program called DISCRETE and two relaxation times, 49.7 +/- 5.6 and 11.2 +/- 2.5 microseconds, were determined. These relaxation times were independent of the method of myosin preparation, the method of myosin purification, the concentration of sodium pyrophosphate between 2 and 10 mM, the concentration of myosin between 0.08 and 1.59 mg/mL, and the temperature between 4.0 and 20.0 degrees C, after correction to 20.0 degrees C. The longer relaxation time is consistent with a rigid, linear myosin molecule. The shorter relaxation time is consistent with myosin that has a completely flexible hinge region in the myosin tail. Both relaxation times are inconsistent with the previously reported single relaxation time of myosin obtained by fitting the birefringence decay data to only 90% of the decay signal. By forcing some of the birefringence decay data in the presence work to fit 90% of the decay signal with a single relaxation time, approximately the same relaxation time as previously reported was obtained.  相似文献   

6.
Male rats in which three pituitaries were grafted beneath the kidney capsule showed approximately a fourfold increase in circulating plasma prolactin concentration. The elevated plasma prolactin concentration did not remain at a constant level but fluctuated with time. The elevated prolactin concentration declined immediately after a single bolus injection of ergocristine (30 micrograms/kg). The slope of the prolactin decay curve, determined by sequential blood sampling, was parallel to a theoretical slope having a 7-min half-life. This result indicates that ergocristine blocked prolactin secretion immediately and completely as the decay curve (T 1/2 = 6.5 min, confidence interval 4.5--11.3) resulting from the administration of ergocristine is the same as the endogenous prolactin decay curve (T 1/2 = 7 min).  相似文献   

7.
Currents were generated by depolarizing pulses in voltage-clamped, dissociated neurons from the CA1 region of adult guinea pig hippocampus in solutions containing 1 microm tetrodotoxin. When the extracellular potassium concentration was 100 mM, the currents reversed at -8.1 +/- 1.6 mV (n = 5), close to the calculated potassium equilibrium potential of -7 mV. The currents were depressed by 30 mM tetraethylammonium in the extracellular solution but were unaffected by 4-aminopyridine at concentrations of 0.5 or 1 mM. It was concluded that the currents were depolarization-activated potassium currents. Instantaneous current-voltage curves were nonlinear but could be fitted by a Goldman-Hodgkin-Katz equation with PNa/PK = 0.04. Conductance-voltage curves could be described by a Boltzmann-type equation: the average maximum conductance was 65.2 +/- 15.7 nS (n = 9) and the potential at which gK was half-maximal was -4.8 +/- 3.9 mV (mean +/- 1 SEM, n = 10). The relationship between the null potential and the extracellular potassium concentration was nonlinear and could be fitted by a Goldman-Hodgkin-Katz equation with PNa/PK = 0.04. The rising phase of potassium currents and the decay of tail currents could be fitted with exponentials with single time constants that varied with membrane potential. Potassium currents inactivated to a steady level with a time constant of approximately 450 ms that did not vary with potential. The currents were depressed by substituting cobalt or cadmium for extracellular calcium but similar effects were not obtained by substituting magnesium for calcium.  相似文献   

8.
The mechanism(s) of the decay of slow calcium current (ICa) in cut twitch skeletal muscle fibers of the frog were studied in voltage-clamp experiments using the double vaseline-gap technique. ICa decay followed a single exponential in 10 mM external Ca2+ and 20 mM internal EGTA solutions in all pulse protocols tested: single depolarizing pulses (activation protocol), two pulses (inactivation protocol), and during a long pulse preceded by a short prepulse (400 ms) to 80 mV (tail protocol). In single pulses the rate constant of ICa decay was approximately 0.75 s-1 at 0 mV and became faster with larger depolarizations. ICa had different amplitudes during the second pulses of the inactivation protocol (0 mV) and of the tail protocol (-20 to 40 mV) and had similar time constants of decay. The time constant of decay did not change significantly at each potential after replacing 10 mM Ca2+ with a Ca2+-buffered solution with malate. With 70 mM intracellular EGTA and 10 mM external Ca2+ solutions, ICa also decayed with a single-exponential curve, but it was about four times faster (approximately 3.5 s-1 at 0 mV pulse). In these solutions the rate constant showed a direct relationship with ICa amplitude at different potentials. With 70 mM EGTA, replacing the external 10 mM Ca2+ solution with the Ca2+-buffered solution caused the decay of ICa to become slower and to have the same relationship with membrane potential and ICa amplitude as in fibers with 20 mM EGTA internal solution. The mechanism of ICa decay depends on the intracellular EGTA concentration: (a) internal EGTA (both 20 and 70 mM) significantly reduces the voltage dependence of the inactivation process and (b) 70 mM EGTA dramatically increases the rate of tubular calcium depletion during the flow of ICa.  相似文献   

9.
During an acute viral infection, virus levels rise, reach a peak and then decline. Data and numerical solutions suggest the growth and decay phases are linear on a log scale. While viral dynamic models are typically nonlinear with analytical solutions difficult to obtain, the exponential nature of the solutions suggests approximations can be found. We derive a two-phase approximate solution to the target cell limited influenza model and illustrate its accuracy using data and previously established parameter values of six patients infected with influenza A. For one patient, the fall in virus concentration from its peak was not consistent with our predictions during the decay phase and an alternate approximation is derived. We find expressions for the rate and length of initial viral growth in terms of model parameters, the extent each parameter is involved in viral peaks, and the single parameter responsible for virus decay. We discuss applications of this analysis in antiviral treatments and in investigating host and virus heterogeneities.  相似文献   

10.
2-p-Toluidinylnaphthalene-6-sulfonate (2,6-TNS) is a compound which is barely fluorescent in pure water but whose fluorescence can be strongly enhanced if the environment becomes hydrophobic, i.e. by the addition of suitable substrates such as proteins or 1, 4-alpha-D-glucans. The enhancement of fluorescence results from the formation of a 2,6-TNS/substrate complex. For linear and ramified 1, 4-alpha-D-glucans, the fluorescence intensities of the complexes depend linearly on their concentrations but nonlinearly on their average molecular weights (AMW). Thus, the fluorescence detector acts simultaneously as a linear detector concerning the concentration of 1,4-alpha-D-glucan and as a nonlinear mass-selective detector concerning its AMW. These properties have been used for the development of a fluorimetric 2,6-TNS-FIA methodology for the determination of beta-amylase activity, using amylose and amylopectin as substrates. The experimental data points, corresponding to the concentration of "detectable" substrate vs depolymerization time, were fitted using a two-parameter exponential decay curve, and the depolymerization rates at time zero were calculated. The depolymerization rates at time zero vs the corresponding initial substrate concentrations were fitted using the Michaelis-Menten hyperbola and the enzymic constants k(3) and K(m) for amylose (5.93 x 10(-3) g/microKat. min and 1.49 g/L, respectively) and for amylopectin (7.40 x 10(-3) g/microKat+. min and 1.65 g/L, respectively) were determined.  相似文献   

11.
N-(Phosphonacetyl)-l-aspartic acid (PALA) is an antitumor agent which is currently under clinical study. A gas chromatography—mass spectrometry—selected ion monitoring assay procedure using [13C]PALA as the internal standard has been developed for the quantitation of PALA in biological samples. Standard curves which related ion intensity peak height ratios (m/e 220/221) to PALA concentrations in plasma and urine were described by a non-linear least square analysis with correlation coefficients of R2 > 0.995 and > 0.996, respectively. Over concentration ranges for PALA of 1–60 μg/ml of plasma and 1–160 μg/ml of urine the coefficient of variation from the fitted curve was 4–18%. This methodology has been used to quantitate PALA in human plasma samples in a study on the clinical pharmacology of the drug.  相似文献   

12.
We analyzed the transport of KCl solutions through the bacterial cellulose membrane and concentration boundary layers (CBLs) near membrane with pressure differences on the membrane. The membrane was located in horizontal-plane between two chambers with different KCL solutions. The membrane was located in horizontal-plane between two chambers with different KCL solutions. As results from the elaborated model, gradient of KCL concentration in CBLs is maximal at membrane surfaces in the case when pressure difference on the membrane equals zero. The amplitude of this maximum decreases with time of CBLs buildup. Application of mechanical pressure gradient in the direction of gradient of osmotic pressure on the membrane causes a shift of this maximum into the chamber with lower concentration. In turn, application of mechanical pressure gradient directed opposite to the gradient of osmotic pressure causes the appearance of maximum of concentration gradient in chamber with higher concentration. Besides, the increase of time of CBLs buildup entails a decrease of peak height and shift of this peak further from the membrane. Similar behavior is observed for distribution of energy dissipation in CBLs but for pressure difference on the membrane equal to zero the maximum of energy dissipation is observed in the chamber with lower concentration. We also measured time characteristics of voltage in the membrane system with greater KCl concentrations over the membrane. We can state that mechanical pressure difference on the membrane can suppress or strengthen hydrodynamic instabilities visible as pulsations of measured voltage. Additionally, time of appearance of voltage pulsations, its amplitude, and frequency depend on mechanical pressure differences on the membrane and initial quotient of KCl concentrations in chambers.  相似文献   

13.
The whole-cell recording mode of the patch-clamp technique was used to study the effect of external tetraethylammonium ([TEA+]o) on the inactivating, voltage-dependent K+ channels of human T lymphocytes. TEA+ reduced the peak amplitude and slowed the time course of the K+ current decay during a depolarizing pulse, resulting in a crossover of the current records in the presence and absence of TEA+. In solutions with different [TEA+]o both the peak K+ current amplitude, lKpeak, and the time constant of the decay of the K+ current, tau d, were reduced in a dose-dependent manner, both with apparent binding constants, KD, of 12 mM. The integral of K+ current during a prolonged depolarizing pulse was unaltered in solutions with different [TEA+]o. The concentration dependence of [TEA+]o on lKpeak, tau d, and the unchanged current integral can be explained with a kinetic scheme in which open channels blocked by TEA+ cannot inactivate.  相似文献   

14.
The flux rates of lactate and alanine in and out of the cells of an intact tissue, which cannot be measured directly because some of the released materials are reabsorbed, were determined by computer analysis of uptakes and outputs by the whole tissue in the presence of various concentrations of these substances. The outputs of labeled lactate and alanine from [U-14C]glucose and the uptakes of [U-14C]lactate and [U-14C]alanine were measured on intact sympathetic ganglia excised from 15-day-old chicken embryos. The volume and time constant of the extracellular space were measured using labeled lactate, alanine, and sucrose. Models, which mathematically described the cellular uptakes and outputs as functions of the extracellular concentrations, were used to predict the exchanges that would be observed on the whole tissue, and their parameters were adjusted for best fit to the actual observations. The fitted models were then used to calculate the fluxes in and out of the cells and the concentrations in the extracellular space. The following results were obtained: (1) Cellular uptakes of lactate and alanine were both well described by familiar Michaelis-Menten kinetics. (2) The cellular output of [14C]-lactate from [14C]glucose declined with increase in the extracellular lactate concentration, whereas the cellular output of [14C]alanine from [14C]glucose rose with the extracellular alanine concentration. (3) Half-saturation values for cellular uptake, determined from the fitted equations, were 0.45 mM for lactate and 1.17 mM for alanine, both several-fold lower than less relevant estimates for the whole tissue made directly from the uptake observations. (4) As much as 45% of the carbon in the glucose consumed was released into the extracellular space as lactate and alanine, but much of this was reabsorbed. Implications for brain metabolism are discussed.  相似文献   

15.
In this study, the temporal shape of voice-induced nitric oxide (NO) signals in exhaled air has been investigated in eight healthy individuals by means of laser magnetic resonance spectroscopy. The results of the experimental part have been compared with calculated signals obtained by using a simple one-compartment model of the paranasal sinuses. In the experimental part, a rapidly increasing NO concentration has been found when the subjects started humming. After reaching a maximum, the emission starts to decrease with the shape of an exponential decay and finally reaches a constant level. The time constant of this decay (NO washout) is 3.0 +/- 1.2 s. The peak height of the NO emission during humming increases when the time between two humming processes increases. When no voice-induced NO emission takes place, the NO concentration in the paranasal sinuses rebuilds again to a maximum concentration. The typical time constant for the NO recovery is 4.5 +/- 3.2 min. A three-compartment model defining exactly the geometry and anatomy of the paranasal sinuses has been developed that is based on three main assumptions of the NO dynamics: 1) constant NO production of the epithelium in the sinuses; 2) the rate of the chemical reaction of NO with the epithelium of the paranasal sinuses is proportional to the NO concentration; and 3) the emission of NO from the sinuses (volume/s) is proportional to the NO concentration. It is shown that the three-compartment model under the experimental conditions can be reduced to a one-compartment model, which describes the complete temporal behavior of the NO exchange.  相似文献   

16.
The transfer of solute through a membrane separating two aqueous solutions is studied with the time-dependent diffusion equation for composite media. By introducing new independent and dependent variables it is shown that the differential equations and boundary conditions can be transformed into a dimensionless form which does not explicitly depend on the diffusivities of the media. Laplace transforms are used to derive explicit solutions for the solute concentration as a function of position and time. It is shown that at large time the concentration approaches the equilibrium distribution exponentially. Explicit results are given for the decay time as a function of the parameters of the system. In addition, an accurate and simplified expression is derived for the decay time for the case of small membrane permeability. The accuracy of the analytic solutions for the concentration profiles is tested by comparing them with numerical results obtained by solving the diffusion equations by the method of finite differences. Excellent agreement is found. Research supported in part by a grant from the National Science Foundation.  相似文献   

17.
Abstract

Biosorption of malathion from aqueous solution was studied using Bacillus sp. S14 immobilised on calcium alginate (3%) using a packed bed column reactor at a temperature of 25 °C and a pH of 7.0. The experiments were conducted to study the effect of important design parameters such as bed height, flow rate and influent malathion concentration. Maximum removal capacity (57%) was found at 4 mL min-1 flow rate, 6.0 cm bed height and 25 mg L-1 influent malathion concentration. The Adam-Bohart model, Wolborska model, Thomas model, Yoon-Nelson model were employed to determine characteristic parameters such as saturation concentration, external mass transfer coefficient, Thomas rate constant, the maximum solid phase concentration of the solute, rate constant, and the time required for 50% adsorbate breakthrough time, which are all useful for process design. Experimental data were well fitted with Adam–Bohart model at the lower region of effluent/influent malathion concentration values but at higher region values data fitted well with the Thomas and Yoon-Nelson models.  相似文献   

18.
C S Hui 《Biophysical journal》1999,77(4):2123-2136
Calcium release was measured in highly stretched frog cut twitch fibers mounted in a double Vaseline-gap voltage clamp chamber, with the internal solution containing 20 mM EGTA plus 0.4 or 1.8 mM added calcium. Rise in myoplasmic [Ca(2+)] was monitored with antipyrylazo III as the indicator at a temperature of 13 to 14 degrees C. The waveform of calcium release rate (Rel) computed from the absorbance change showed an early peak (Rel(p)) followed by a maintained phase (Rel(m)). Each Rel(p)-versus-V plot was fitted with a Boltzmann distribution function. The maximum value of Rel(p) (Rel(p,max)) was compared in various calcium-containing external solutions. The average value in a Cl(-) solution was about one-third larger than those in a CH(3)SO(3)(-) or gluconate solution, whereas the values in the CH(3)SO(3)(-) and gluconate solutions had no statistically significant difference. In external solutions containing CH(3)SO(3)(-) or gluconate, a replacement of the Ca(2+) with Mg(2+) reduced Rel(p,max) by 30 to 50%, on average. The values of Rel(p, max) also had no statistically significant difference among calcium-free external solutions containing different impermeant anions. An increase of the nominal free [Ca(2+)] in the end-pool solution from a reduced to the normal physiological level increased the value of Rel(p,max), and also slowed the decay of the maintained phase of the Rel waveform. The Rel waveforms in the Cl(-) and CH(3)SO(3)(-) solutions were compared in the same fiber at a fixed potential. CH(3)SO(3)(-) increased the time to peak, reduced Rel(p), and increased Rel(m), and the effects were partially reversible. Under the hypothesis that the decay of the peak was due to calcium inactivation of calcium release, the inactivation was larger in Cl(-) than in CH(3)SO(3)(-), in qualitative agreement with the ratio of Rel(p) in the two solutions. Under the alternative hypothesis that the peak and the maintained phase were separately gated by calcium and depolarization, respectively, then CH(3)SO(3)(-) appeared to decrease the calcium-gated component and increase the voltage-gated component.  相似文献   

19.
Effects of different shear rates (14, 25, and 50 s−1), gum concentrations (3%, 3.5%, and 4%), and temperatures (5–65 °C) on flow properties of Alyssum homolocarpum seed gum solutions were investigated using a rotational viscometer. The experimental data were fitted with three time-dependent rheological models, namely second-order structural kinetic model, Weltman model, and first-order stress decay model with a non-zero stress value. The rate constant and extent of viscosity strongly depended on the shear rate, gum concentration, and temperature. It was found that A. homolocarpum seed gum samples exhibited shear thinning and thixotropic behavior for all concentrations and temperatures. The amount of structural breakdown decreased with shear rate, but it did not have a general trend with concentration and temperature. The extent of thixotropy increased with increasing gum concentration and decreased with increasing temperature and shear rate. In this work, the decay rate constant generally increased with increasing shear rate; however, it did not have any trend with concentration and temperature.  相似文献   

20.
Eleven presumed healthy subjects ingested in random order 3 different doses of ethanol (0.4, 0.6, 0.8 g X kg body weight-1) at 4 different times of day (0600, 1200, 1800, 0000). The rates of ethanol metabolism were measured by calculating the rate of decline of the linear portion of a plot of urinary concentration of ethanol against time (making correction for the ratio of ethanol in blood and urine). The rate of metabolism depended upon the dose of ethanol ingested and the peak concentration of urinary ethanol. The results lend further support to the view that the metabolic removal of ethanol can be described by Michaelis-Menten kinetics. Estimates of the Michaelis-Menten parameters Km and Vmax were made by considering the curvilinear portion of the decay curve at low concentrations. The values of these varied with time of ethanol ingestion; in particular, variation in Vmax can substantially account for the circadian rhythm of ethanol metabolism that had been measured previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号