首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ecology of Lake Nakuru (Kenya)   总被引:11,自引:0,他引:11  
E. Vareschi 《Oecologia》1982,55(1):81-101
Summary Abiotic factors, standing crop and photosynthetic production were studied in the equatorial alkaline-saline closed-basin Lake Nakuru (cond. 10,000–160,000 S). Meteorological conditions and abiotic factors offer suppositions for a high primary productivity: mean solar radiation is 450–550 kerg·cm-2·s-1, with little seasonal variation, regular winds circulate the lake every day and nutrient concentrations are usually high (>100 g P–PO4·l-1). Oxygen concentrations near sediments were <1 gO2·m-3 for at least 6 h·d-1 in 1972/73, resulting in a release of 45 mg P–PO4·m-2·d-1. Attenuation coefficients vary from 3.6–16.5 according to algal densities and mean depth from 0–400 cm. Algal biomass was 200 g·m-3 (d.w.) in 1972/73, due to a lasting Spirulina platensis bloom (98.5% of algal biomass). In 1974 algal biomass suddenly dropped to 50 g·m-3 (d.w.). Spirulina and several consumer organisms almost vanished, but coccoid cyanobacteria, Anabaenopsis and diatoms increased. Several causes for this change in ecosystem structure are discussed. The use of the light/dark bottle method to measure photosynthetic production in eutrophic alkaline lakes is discussed and relevant experiments were done. Oxygen tensions of 2–35 gO2·m-3 do not influence primary production rates. Net photosynthetic rates (mgO2·m-3·h-1; photosynthetic quotient=1.18) reached 12–17.7 in 1972/73 and 2–3 in 1974, but vertically integrated rates were only 1–1.4 in 1972/73 and 0.8 in 1974, and daily net photosynthetic rates (gO2·m-3·24 h-1) 3.5 in 1972/73 and 1 in 1974. 50% of areal rates were produced within the 10 most productive cm of the depth profile. The disproportion between high algal standing crops and relatively low production rates is due to self-shading of the algae, reducing the euphotic zone to 35 cm in 1972/73 and 77 cm in 1974. Efficiency of light utilization is 0.4–2%, varying with time of day and phytoplankton density. In situ efficiencies show an inverse relationship to light intensities. Photosynthetic rates of L. Nakuru remain within the range of other African lakes (0.1–3 gO2·m-2·h-1). The relation of O2 produced/Chl a of the euphotic zone is 50% lower then in tropical African freshwater lakes and conforms to lakes of temperate regions.  相似文献   

2.
Summary The influence of the concentration of oxygen on lipase production by the fungus Rhizopus delemar was studied in different fermenters. The effect of oxygen limitation ( 47 mol/l) on lipase production by R. delemar is large as could be demonstrated in pellet and filamentous cultures. A model is proposed to describe the extent of oxygen limitation in pellet cultures. Model estimates indicate that oxygen is the limiting substrate in shake flask cultures and that an optimal inoculum size for oxygen-dependent processes can occur.Low oxygen concentrations greatly negatively affect the metabolism of R. delemar, which could be shown by cultivation in continuous cultures in filamentous growth form (Doptimal=0.086 h-1). Continuous cultivations of R. delemar at constant, low-oxygen concentrations are a useful tool to scale down fermentation processes in cases where a transient or local oxygen limitation occurs.Symbols and Abbreviations CO Oxygen concentration in the gas phase at time = 0 (kg·m-3) - CO 2i Oxygen concentration at the pellet liquid interface (kg·m-3) - CO 2i Oxygen concentration in the bulk (kg·m-3) - D Dilution rate (h-1) - IDO 2 Diffusion coefficient for oxygen (m2·s-1) - dw Dry weight of biomass (kg) - f Conversion factor (rs O 2 to oxygen consumption rate per m3) (-) - k Radial growth rate (m·s-1) - K Constant - kla Volumetric mass transfer coefficient (s-1) - klA Oxygen transfer rate (m-3·s-1) - kl Mass transfer coefficient (m·s-1) - K O 2 Affinity constant for oxygen (mol·m-3) - K w Cotton plug resistance (m-3·s-1) - M Henry coefficient (-) - NV Number of pellets per volume (m-3) - R Radius (m) - RO Radius of oxygen-deficient core (m) - RQ Respiration quotient (mol CO2/mol O2) - rs O 2 Specific oxygen consumption rate per dry weight biomass (kg O2·s-1[kg dw]-1) - rX Biomass production rate (kg·m-3·s-1) - SG Soytone glucose medium (for shake flask experiments) - SG 4 Soytone glucose medium (for tower fermenter and continuous culture experiments) - V Volume of medium (m-3) - X Biomass (dry weight) concentration (kg·m-3) - XR o Biomass concentration within RO for a given X (kg·m-3) - Y O 2 Biomass yield calculated on oxygen (kg dw/kg O2) - Thiele modulus - Efficiency factor =1-(RO/R)3 (-) - Growth rate (m-1·s-1·kg1/3) - Dry weight per volume of pellet (kg·m-3)  相似文献   

3.
A membrane enzyme reactor with simultaneous separation was investigated. Enzymes, urease and aspartase, were immobilized by a porous polytetrafluoroethylene membrane. Electrical field was applied in the medium while the reaction was carried out. Products with electrical charge could be separated through the membrane from the reaction medium as they were formed. Reaction behavior was analyzed by a simple model considering both pore-migration and reaction in the skelton of the membrane. According to the analysis the inherent reaction rate of the immobilized enzymes decreases significantly. This is probably caused by the structural variation of enzymes. For the case of urease, the change of pH inside the membrane may also cause the decrease of the reaction rate. The model analysis showed that the enzyme content in the membrane and the residence time of the substrate in the membrane governed overall extent of reaction.List of Symbols e g (dm3)–1 enzyme concentration in the membrane - L cm membrane thickness - K m mM Michaelis constant - Rate mmol · min–1 · g–1 rate of product formation per unit weight of enzyme - S mM substrate concentration - S in mM inlet substrate concentration - S out mM outlet substrate concentration - u cm · min–1 migration rate - V V voltage between the electrodes - V m mmol · min–1 · g–1 maximum reaction rate - X conversion - z cm distance from the surface inside the membrane - void fraction of the porous membrane - tortuosity of the membrane - min space time  相似文献   

4.
Cross-flow filtration (CFF) has been investigated as a method of separating filamentously growing fungal cells and purifying the polysaccharide produced. The effects of transmembrane pressure, module geometry (e.g. channel height or tube diameter), tangential feed velocity and cell as well as polysaccharide concentration are discussed. Apart from these experiments, influences by the recirculation pump used are shown.List of Symbols b f fouling index - b factor refering to the behaviour of the sublayer - C kg · m–3 concentration - C g kg · m–3 solute concentration at the membrane - C b kg · m–3 solute concentration in the bulk phase - D s-1 shear rate - k m · s–1 mass-transfer coefficient - K mPa · sn consistency index - n flow behaviour index - P w m3 · s–1 · m–2 rate of permeation - P w1 m3 · s–1 · m–2 rate of permeation at 1 minute - P w m3 · s–1 · m–2 rate of permeation at the beginning - p Pa pressure - Q m2 largest cross-section of a particle - q m2 smallest cross-section of a particle - Re Reynolds number - R f –1 fouling resistance - R m m–1 membrane resistance - t s time - w m · s–1 tangential feed velocity Greek Symbols friction factor - pTM Pa transmembrane pressure - mPa · s shear viscosity - sp specific viscosity (rel. increase of viscosity sp=rel-1) - [] m3· kg–1 intrinsic viscosity - w m2 · s–1 kinematic viscosity - kg · m–3 density Indices b bulk - cell cells - f fouling - g gelling - PS polysaccharide - rel relative - sp specific - w water  相似文献   

5.
We quantified metabolic power consumption as a function of wind speed in the presence and absence of simulated solar radiation in rock squirrels, Spermophilus variegatus, a diurnal rodent inhabiting arid regions of Mexico and the western United States. In the absence of solar radiation, metabolic rate increased 2.2-fold as wind speed increased from 0.25 to 4.0 m·s-1. Whole-body thermal resistance declined 56% as wind speed increased over this range, indicating that body insulation in this species is much more sensitive to wind disruption than in other mammals. In the presence of 950 W·m-2 simulated solar radiation, metabolic rate increased 2.3-fold as wind speed was elevated from 0.25 to 4.0 m·s-1. Solar heat gain, calculated as the reduction in metabolic heat production associated with the addition of solar radiation, increased with wind speed from 1.26 mW·g-1 at 0.25 m·s-1 to 2.92 mW·g-1 at 4.0 m·s-1. This increase is opposite to theoretical expectations. Both the unexpected increase in solar heat gain at elevated wind speeds and the large-scale reduction of coat insulation suggests that assumptions often used in heat-transfer analyses of animals can produce important errors.Abbreviations absorptivity of coat to solar radiation - kinematic viscosity of air (mm2·s-1) - reflectivity of coat to solar radiation - a r B expected at zero wind speed (s·m-1) - A P projected surface area of animal on plane perpendicular to solar beam (cm2) - A SKIN skin surface area (cm2) - b Coefficient describing change in r B with change in square-root of wind speed (s1.5·m1.5) - d hair diameter (m) - d characteristic dimension of animal (m) - D H thermal diffusivity of air (m2·s-1) - E evaporative heat loss (W·m-2) - I probability per unit coat depth that photon will strike hair - k constant equalling 1200 J·m-3·°C-1 - l C coat depth m) - l H hair length (m) - M metabolic rate (W·m-2) - n density of hairs of skin (m-2) - Q A solar heat gain to animal (W·m-2) - Q I solar irradiance intercepted by animal (W·m-2) - RQ respiratory quotient - r A thermal resistance of boundary layer (s·m-1) - r B whole-body thermal resistance (s·m-1) - r E thermal resistance between animal surface and environment s·m-1) - r R radiative resistance (s·m-1) - r S sum of r B and r E at 0.25 m·s-1 (s·m-1) - r T tissue thermal resistance s·m-1) - T AIR air temperature (°C) - T B body temperature (°C) - T E operative temperature of environment (°C) - T ES standard operative temperature of environment (°C) - u wind speed (m·s-1)  相似文献   

6.
The nitrogen cycle in lodgepole pine forests,southeastern Wyoming   总被引:7,自引:4,他引:3  
Storage and flux of nitrogen were studied in several contrasting lodgepole pine (Pinus contorta spp.latifolia) forests in southeastern Wyoming. The mineral soil contained most of the N in these ecosystems (range of 315–860 g · m–2), with aboveground detritus (37.5–48.8g · m–2) and living biomass (19.5–24.0 g · m–2) storing much smaller amounts. About 60–70% of the total N in vegetation was aboveground, and N concentrations in plant tissues were unusually low (foliage = 0.7% N), as were N input via wet precipitation (0.25 g · m–2 · yr–1), and biological fixation of atmospheric N (<0.03 g · m–2 · yr–1, except locally in some stands at low elevations where symbiotic fixation by the leguminous herbLupinus argenteus probably exceeded 0.1 g · m–2 · yr–1).Because of low concentrations in litterfall and limited opportunity for leaching, N accumulated in decaying leaves for 6–7 yr following leaf fall. This process represented an annual flux of about 0.5g · m–2 to the 01 horizon. Only 20% of this flux was provided by throughfall, with the remaining 0.4g · m–2 · yr–1 apparently added from layers below. Low mineralization and small amounts of N uptake from the 02 are likely because of minimal rooting in the forest floor (as defined herein) and negligible mineral N (< 0.05 mg · L–1) in 02 leachate. A critical transport process was solubilization of organic N, mostly fulvic acids. Most of the organic N from the forest floor was retained within the major tree rooting zone (0–40 cm), and mineralization of soil organic N provided NH4 for tree uptake. Nitrate was at trace levels in soil solutions, and a long lag in nitrification was always observed under disturbed conditions. Total root nitrogen uptake was calculated to be 1.25 gN · m–2 · yr–1 with estimated root turnover of 0.37-gN · m–2 · yr–1, and the soil horizons appeared to be nearly in balance with respect to N. The high demand for mineralized N and the precipitation of fulvic acid in the mineral soil resulted in minimal deep leaching in most stands (< 0.02 g · m–2 · yr–1). These forests provide an extreme example of nitrogen behavior in dry, infertile forests.  相似文献   

7.
A modified Rotating Biological Contactor (RBC) was used for the treatability studies of synthetic tapioca wastewaters. The RBC used was a four stage laboratory model and the discs were modified by attaching porous nechlon sheets to enhance biofilm area. Synthetic tapioca wastewaters were prepared with influent concentrations from 927 to 3600 mg/l of COD. Three hydraulic loads were used in the range of 0.03 to 0.09 m3·m–2·d–1 and the organic loads used were in the range of 28 to 306 g COD· m–2·d–1. The percentage COD removal were in the range from 97.4 to 68. RBC was operated at a rotating speed of 18 rpm which was found to be the optimal rotating speed. Biokinetic coefficients based on Kornegay and Hudson models were obtained using linear analysis. Also, a mathematical model was proposed using regression analysis.List of Symbols A m2 total surface area of discs - d m active depth of microbial film onany rotating disc - K s mg ·l–1 saturation constant - P mg·m–2·–1 area capacity - Q l·d–1 hydraulic flow rate - q m3·m–2·d–1 hydraulic loading rate - S 0 mg·l–1 influent substrate concentration - S e mg·l–1 effluent substrate concentration - w rpm rotational speed - V m3 volume of the reactor - X f mg·l–1 active biomass per unit volume ofattached growth - X s mg·l–1 active biomass per unit volume ofsuspended growth - X mg·l–1 active biomass per unit volume - Y s yield coefficient for attachedgrowth - Y A yield coefficient for suspendedgrowth - Y yield coefficient, mass of biomass/mass of substrate removed Greek Symbols hr mean hydraulic detention time - (max)A d–1 maximum specific growth rate forattached growth - (max)s d–1 maximum specific growth rate forsuspended growth - max d–1 maximum specific growth rate - d–1 specific growth rate - v mg·l–1·hr–1 maximum volumetric substrateutilization rate coefficient  相似文献   

8.
Production studies on protozoa   总被引:3,自引:0,他引:3  
Summary In the river Saale and in the terrestrial moss Mnium cuspidatum Leyss. in 1974/75 the annual production of Testacea and loricate ciliated protozoa were investigated.The production was estimated in the Saale-Aufwuchs on a -meso ... oligosaprobic (Kaulsdorf, Thuringia, GDR) and on a -mesosaprobic (Rothenstein, Thuringia, GDR) area of the river. The mosses were investigated in a forest near Jena.The production was estimated on slides and in special productionchambers; the time of exposure was 2 weeks. Investigations concerned annual production of individuals and biomass, the ratio of annual production/standing crop (P/B), numbers of generations per year (G) and mortality (M%/d). In the mosses, the rainfall modified the production and dislocation of the protozoa.The values for production are: Aufwuchs Saale (-meso... oligosaprobic): 24·106 i/m2·a (=1,0 g/m2·a=79·103 i/m2·d); P/B: 12.6. Aufwuchs Saale (-mesosaprobic): 3.2·106 i/m2·a (=0.35 g/m2·a=81·103 i/m2·d); P/B: 34.9; G: 22; M: 5%/d. Moss: 145·106 i/m2·a (=0.11 g/m2·a=40.6·103 i/m2·d); P/B: 8.1; G: 16.5; M: 3.0%/d.  相似文献   

9.
The stability and, consequently, the lifetime of immobilized enzymes (IME) are important factors in practical applications of IME, especially so far as design and operation of the enzyme reactors are concerned. In this paper a model is presented which describes the effect of intraparticle diffusion on time stability behaviour of IME, and which has been verified experimentally by the two-substrate enzymic reaction. As a model reaction the ethanol oxidation catalysed by immobilized yeast alcohol dehydrogenase was chosen. The reaction was performed in the batch-recycle reactor at 303 K and pH-value 8.9, under the conditions of high ethanol concentration and low coenzyme (NAD+) concentration, so that NAD+ was the limiting substrate. The values of the apparent and intrinsic deactivation constant as well as the apparent relative lifetime of the enzyme were calculated.The results show that the diffusional resistance influences the time stability of the IME catalyst and that IME appears to be more stabilized under the larger diffusion resistance.List of Symbols C A, CB, CE mol · m–3 concentration of coenzyme NAD+, ethanol and enzyme, respectively - C p mol · m3 concentration of reaction product NADH - d p mm particle diameter - D eff m2 · s–1 effective volume diffusivity of NAD+ within porous matrix - k d s–1 intrinsic deactivation constant - K A, KA, KB mol · m–3 kinetic constant defined by Eq. (1) - K A x mol · m–3 kinetic constant defined by Eq. (5) - r A mol · m–3 · s–1 intrinsic reaction rate - R m particle radius - R v mol · m–3 · s–1 observed reaction rate per unit volume of immobilized enzyme - t E s enzyme deactivation time - t r s reaction time - V mol · m–3 · s–1 maximum reaction rate in Eq. (1) - V x mol · m–3 · s–1 parameter defined by Eq. (4) - V f m3 total volume of fluid in reactor - w s kg mass of immobilized enzyme bed - factor defined by Eqs. (19) and (20) - kg · m–3 density of immobilized enzyme bed - unstableness factor - effectiveness factor - Thiele modulus - relative half-lifetime of immobilized enzyme Index o values obtained with fresh immobilized enzyme  相似文献   

10.
Summary Free-living or immobilized Chlamydomonas reinhardtii cells photoproduce ammonium from nitrite in a medium containing 1 mM of l-methionine-d,l-sulphoximine (MSX). Ammonium is accumulated in the medium to 8 mM final concentration, which inhibits nitrite uptake by the MSX-treated cells and consequently the excretion of ammonium is blocked. However, if ammonium was removed from the medium and nitrite and MSX periodically restored, the photoproduction process could be maintained over 96 h, with a final ammonium concentration of about 18 mM for free-living cells and 28 mM for immobilized ones. The MSX-treated cells showed a photoproduction productivity of 1300 mol NH 4 + · mg chlorophyll (Chl)-1, with an average production rate of 14 mol NH 4 + · mg Chl-1 per hour, for calcium alginate-entrapped cells, while the corresponding data for free-living ones was 650 mol NH 4 + · mg Chl-1 and 6.7 mol NH 4 + · mg Chl-1 per hour, respectively. Immobilized cells showed a significant increase in the nitrite uptake rate, probably due to a change in membrane permeability as a consequence of cell-matrix interactions.  相似文献   

11.
The production of lactose-based sweeteners is considered very promising. Fungal lactase has been immobilized on crosslinked chitin to develop a process for the continuous hydrolysis of demineralized whey permaete. The optimization of lactase immobilization on chitin and chitosan was performed, activities of 4 · 105 and 2.2 · 105 u/kg at yields of 33 and 23% were obtained for both supports, respectively. The chitin based catalyst was selected for further studies and a procedure was developed for in-situ enzyme immobilization. The kinetic behaviour of the catalyst was determined to propose a kinetic model for the initial rate of lactose hydrolysis. Pseudo steady-state and long term operation of packed bed reactors with chitin-immobilized lactase ranging from small laboratory to pre-pilot unit was carried out. The results are discussed and compared with commercial immobilized lactases. Preliminary economic evaluation for the production of ultrafiltered whey protein and hydrolyzed lactose syrup, within a dairy industry in Chile, was satisfactory in terms of profitability, both for the chitin immobilized lactase developed and for a commercial immobilized lactase.List of Symbols a moles/m3 glucose concentration in Eq. (1) - C i US$ total annual cost (without considering plant depreciation) - D US$ annual depreciation - F m3/h flowrate - h m3/h volumetric mass transfer coefficient - i moles/m3 galactose concentration in Eqs. (1) and (2) - K A moles/m3 dissociation constant for glucose in Eq. (1) - K A moles/m3 dissociation constant for glucose in Eq. (1) - K I moles/m3 inhibition constant for galactose in Eqs. (1) and (2) - K m moles/m3 Michaelis constant for substrate in Eqs. (1) and (2) - k D h–1 first-order thermal deactivation constant - P kg dry weight of catalyst - PV US$ net present value - R % discounted cash-flow rate of return - s moles/m3 substrate concentration - s0 moles/m3 feed substrate concentration - S n US$ annual sales income - TC US$ total capital income - t 1/2 h catalyst half-life - v moles/h · kg initial rate of reaction - V MAX moles/h · kg maximum reaction rate in Eqs. (1) and (2) - V MAX moles/h · kg maximum reaction rate in Eq. (1) - ¯V max moles/h initial rate of reaction - V R m3 reaction volume free of catalyst particles - X substrate degree of conversion = s0–s/s0 - Damkoehler number = ¯V MAX /h k m - moles/(m3 · h) reactor productivity in Eq. (3)  相似文献   

12.
Synopsis Slimy sculpins (Cottus cognatus) were caught in the littoral region of Toolik Lake, an arctic lake. These sculpins grew slower and lived longer (71 mm at 8+ years) than more southerly populations. Sculpin distribution along the slope of the rocky littoral zone was greatest at the 3.5 m depth and coincided with the rock-mud interface. The hypothesis that this preferred area provided both increased prey and reduced predation was advanced. Yearly production estimate of littoral sculpins was 0.40 g · m–2 · yr–1 with a P/B ratio of 0.36. This is considerably less than estimates for more southerly populations of the same species.  相似文献   

13.
Experiments were conducted in a packed bed bio-reactor consisting of entrapped yeast cells in alginate matrix for continuous production of alcohol. The variables include initial substrate level, reactor diameter, diameter of the bead and residence time. The influence of these parameters on the conversion of substrate was studied. The film and pore diffusional effects were observed by varying the column and bead diameters, respectively. The pseudo first order reaction rate constant was calculated and correlated with the bead diameter. The effectiveness factor and the Thiele modulus were estimated. A correlation was proposed for fractional conversion in terms of operating variables. It is possible to predict the residence time required and volumetric productivity achieved in a bioreactor for any given initial substrate concentration at any fractional conversion obtained.List of Symbols a m m2/kg surface are per unit mass of catalyst particle - D m diameter of the reactor - D e m2/s effective diffusivity - d m particle diameter - h m bed height - k m/s first order reaction rate constant - k m3/(kg · s) pseudo first order reaction rate constant - k in m3/(kg · s) intrinsic reaction rate constant, (=K/gh) - k m m/s mass transfer coefficient - P kmol/(m3 · s) volumetric productivity - Q m3/s flow rate of the feed - S kmol/m3 substrate concentration at any time - S o kmol/m3 initial substrate concentration - S p kmol/m3 substrate concentration on the gel bead surface - t s reaction time - T (kg · cat · s)/m3 space time (weight of the biocatalyst/flow rate of the feed) - v kmol/(kg · cat · s) reaction rate - V pfr m3 volume of the packed bed reactor - X [1-(S/S o)] fraction of the substrate converted in to product Greek Symbols effectiveness factor - Thiele modulus - kg/m3 density of the catalyst particle - s residence time, (= D2 h/4Q) - voidage  相似文献   

14.
R. J. Reid  F. A. Smith 《Planta》1992,186(4):558-566
This paper deals with the effect of calcium binding in the cell wall on the measured 45Ca influx in Chara corallina Klein ex Will. esk. R.D. Wood. Calcium in the cell wall was in the range 687–1197 (mol · m–2 compared to the sap which contained only 144–256 mol · m–2. In dilute culture solutions the calcium content of the cell wall was relatively independent of external calcium at concentrations above about 0.1 mol · m–3. The half-times for exchange of calcium from 45Ca-labelled cell walls varied from 45 min at 0.05 mol · m–3 to less than 2 min at 2 mol · m–3. The effectiveness of other cations in displacing calcium from cell walls was in the order La > Zn > Co > Ni > Mg. Rinsing of 45Ca-labelled cell walls in 2 mol · m–3 LaCl3 for 20 min removed more than 99% of the bound 45Ca. However, the residual 45Ca activity in isolated cell walls following La3+ rinsing was similar to that in whole cells. It is concluded that in whole cells 45Ca influx cannot normally be distinguished from extracellular binding of calcium. Methods are described for the measurement of 45Ca fluxes in charophyte cells by isolation of intracellular 45Ca after the uptake period using techniques which avoid contamination from the large amount of tracer bound in the cell wall. At an external calcium concentration of 1 mol · m–3, the plasmalemma influx was approx. 0.2 nmol · m–2 · s–1 of which about half entered the vacuole and half was effluxed back into the external solution. The cytoplasm filled with calcium with a half-time of 40–50 min with an apparent pool size of 50 mmol · m–3. After 2 h the net flux to the cell was almost the same as the vacuolar flux. The fluxes reported are an order of magnitude lower than previously reported calcium fluxes in plants.Abbreviations APW artificial pond water This work was supported by the Australian Research Council. The authors wish to thank Patrick Kee for his skilful technical assistance and Professor E.A.C. MacRobbie, University of Cambridge, UK, and Dr. M. Tester for helpful discussions.  相似文献   

15.
The batch productivity (Q TM) of the production of the nucleoside antibiotic toyocamycin (TM) by Streptomyces chrestomyceticus was increased ten-fold by selection of a UV generated mutant, optimization of pH, increasing incubation temperature from 28 °C to 36 °C, and addition of soy oil. Initial high oxygen transfer rates stimulated Q TM maxima two-fold. Antibiotic production by the mutant strain, U190, however, appeared more shear sensitive than the parent culture FCRF 341 with maximum antibiotic titer being inversely related to impellor tip velocity, T v . For this reason, scale-up could not be done at constant P/V or constant volumetric oxygen transfer. Instead, programming of impeller speed was evaluated in order to maintain optimal impeller tip velocity during scale-up. It was found that a low constant T v maintained in scale-up in geometrically similar vessels was most beneficial for duplication of optimal antibiotic productivity, Q TM. Pilot fermentations (120 dm3 scale) were used to determine coefficients of Q TM variation from oxygen uptake rate (OUR) and total CO2 evolution data for monitoring of Q TM variation during scale-up to the 12,000 dm3 scale. This technique allowed for on-line prediction of antibiotic titer and Q TM from fermentor exhaust gas data.List of Symbols A scale constant - B shape constant - C location of maximum constant - D m impeller diameter (m) - H m liquid height (m) - OTR MmolO2·(dm3)–1min–1 oxygen transfer rate - OUR MmolO2·(dm3)–1min–1 oxygen uptake rate - PCV cm3 packed cell volume - P/V watts/dm3 volumetric power consumption - Q 1 · min–1 corrected to standard conditions of temperature, pressure aeration rate - Q TM g/(cm3 · h) or kg/(m3 · h) antibiotic productivity - T m tank diameter - T mix s mixing time - T v cm · s–1 impeller tip velocity - TM g/cm3 Toyocamycin concentration - TNP Tricyclic nucleoside phosphate  相似文献   

16.
Flight of the honey bee VII: metabolic power versus flight speed relation   总被引:1,自引:1,他引:0  
The existing experimental data on metabolic power P m of honey bees are critically discussed, partly corrected for real flight conditions and plotted as a function of flight speed v. New wind tunnel measurements of tethered flight under near-natural conditions are added in the range 3.3<v<5.1 m·s-1, derived from exhaustion flight measurements. Within this small sector the latter measurements can be characterised by a linear correlation: P m(mW)=6.72v (m·s-1)+13.83, the slope of which is significantly different from zero. The over-all P m(v) curve is significantly not a straight line of zero slope but a U-shaped minimum curve and may be approximated by a second-order polynom: P m=49.2-8.9v+1.5v 2. The same is true for relative metabolic power, P m rel (e) related to empty body mass of 76.5 mg: P m rel(e)=630.0-114.0v+19.2v 2 (P m in mW: P m rel in mW·g-1; v in m·s-1). The data support the existence of a U-shaped power-versus-speed curve in bees.Abbreviations bm body mass (mg) - f full - e empty - mu muscles - P m (mJ·s-1=mW) metabolic power (input) - P m rel (mW·g-1) relative metabolic power - P mec (mW) mechanical power (output) - efficiency (of the flight musculature) - t(s) flight time - v (m·s-1) relative speed between bee and air  相似文献   

17.
Kudzu (Pueraria lobata (Willd) Ohwi.) is a vine which forms large, monospecific stands in disturbed areas of the southeastern United States. Kudzu also emits isoprene, a hydrocarbon which can significantly affect atmospheric chemistry including reactions leading to tropospheric ozone. We have studied physiological aspects of isoprene emission from kudzu so the ecological consequences of isoprene emission can be better understood. We examined: (a) the development of isoprene emission as leaves developed, (b) the interaction between photon flux density and temperature effects on isoprene emission, (c) isoprene emission during and after water stress, and (d) the induction of isoprene emission from leaves grown at low temperature by water stress or elevated temperature. Isoprene emission under standard conditions of 1000 mol photons·m-2·s-1 and 30°C developed only after the leaf had reached full expansion, and was not complete until up to two weeks past the point of full expansion of the leaf. The effect of temperature on isoprene emission was much greater than found for other species, with a 10°C increase in temperature causing a eight-fold increase in the rate of isoprene emission. Isoprene emission from kudzu was stimulated by increases in photon flux density up to 3000 mol photons·m-2·s-1. In contrast, photosynthesis of kudzu was saturated at less than 1000 mol·m-2·s-1 photon flux density and was reduced at high temperature, so that up to 20% of the carbon fixed in photosynthesis was reemitted as isoprene gas at 1000 mol photons·m-2·s-1 and 35°C. Withholding water caused photosynthesis to decline nearly to zero after several days but had a much smaller effect on isoprene emission. Following the relief of water stress, photosynthesis recovered to the prestress level but isoprene emission increased to about five times the prestress rate. At 1000 mol photons·m-2·s-1 and 35°C as much as 67% of the carbon fixed in photosynthesis was reemitted as isoprene eight days after water stress. Leaves grown at less than 20°C did not make isoprene until an inductive treatment was given. Inductive treatments included growth at 24°C, leaf temperature of 30°C for 5 h, or witholding water from plants. With the new information on temperature and water stress effects on isoprene emission, we speculate that isoprene emission may help plants cope with stressful conditions.  相似文献   

18.
Bacterial productivity and microbial biomass in tropical mangrove sediments   总被引:14,自引:0,他引:14  
Bacterial productivity (3H-thymidine incorporation into DNA) and intertidal microbenthic communities were examined within five mangrove estuaries along the tropical northeastern coast of Australia. Bacteria in mangrove surface sediments (0–2 cm depth) were enumerated by epifluorescence microscopy and were more abundant (mean and range: 1.1(0.02–3.6)×1011 cells·g DW–1) and productive (mean: 1.6 gC·m–2· d–1) compared to bacterial populations in most other benthic environments. Specific growth rates (¯x=1.1) ranged from 0.2–5.5 d–1, with highest rates of growth in austral spring and summer. Highest bacterial numbers occurred in winter (June–August) in estuaries along the Cape York peninsula north of Hinchinbrook Island and were significantly different among intertidal zones and estuaries. Protozoa (105–106·m–2, pheopigments (0.0–24.1g·gDW–1) and bacterial productivity (0.2–5.1 gC·m–2·d–1) exhibited significant seasonality with maximum densities and production in austral spring and summer. Algal biomass (chlorophylla) was low (mean: 1.6g·gDW–1) compared to other intertidal sediments because of low light intensity under the dense forest canopy, especially in the mid-intertidal zone. Partial correlation analysis and a study of possible tidal effects suggest that microbial biomass and bacterial growth in tropical intertidal sediments are regulated primarily by physicochemical factors and by tidal flushing and exposure. High microbial biomass and very high rates of bacterial productivity coupled with low densities of meiofaunal and macroinfaunal consumers observed in earlier studies suggest that microbes may be a sink for carbon in intertidal sediments of tropical mangrove estuaries.  相似文献   

19.
The light-dependent modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was studied in two species: Phaseolus vulgaris L., which has high levels of the inhibitor of Rubisco activity, carboxyarabinitol 1-phosphate (CA1P), in the dark, and Chenopodium album L., which has little CA1P. In both species, the ratio of initial to fully-activated Rubisco activity declined by 40–50% within 60 min of a reduction in light from high a photosynthetic photon flux density (PPFD; >700 mol · m–2 · s–1) to a low PPFD (65 ± 15 mol · m–2 · s–1) or to darkness, indicating that decarbamylation of Rubisco is substantially involved in the initial regulatory response of Rubisco to a reduction in PPFD, even in species with potentially extensive CA1P inhibition. Total Rubisco activity was unaffected by PPFD in C. album, and prolonged exposure (2–6 h) to low light or darkness was accompanied by a slow decline in the activity ratio of this species. This indicates that the carbamylation state of Rubisco from C. album gradually declines for hours after the large initial drop in the first 60 min following light reduction. In P. vulgaris, the total activity of Rubisco declined by 10–30% within 1 h after a reduction in PPFD to below 100 mol · m–2 · s–1, indicating CA1P-binding contributes significantly to the reduction of Rubisco capacity during this period, but to a lesser extent than decarbamylation. With continued exposure of P. vulgaris leaves to very low PPFDs (< 30 mol · m–2 · s–1), the total activity of Rubisco declined steadily so that after 6–6.5 h of exposure to very low light or darkness, it was only 10–20% of the high-light value. These results indicate that while decarbamylation is more prominent in the initial regulatory response of Rubisco to a reduction in PPFD in P. vulgaris, binding of CA1P increases over time and after a few hours dominates the regulation of Rubisco activity in darkness and at very low PPFDs.Abbreviations CA1P 2-carboxyarabinitol 1-phosphate - CABP 2-carboxyarabinitol 1,5-bisphosphate - kcat substrate-saturated turnover rate of fully carbamylated enzyme - PPFD photosynthetically active photon flux density (400–700 nm) - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate  相似文献   

20.
Summary Basal oxygen consumption, ventilatory frequency, and heart rate were recorded at four different times during the unusually protracted 15–16-month spawning run of the Southern Hemisphere lamprey Geotria australis. At 15°C, the mean basal oxygen consumption of G. australis caught immediately after they had left the sea and embarked on the spawning run (45 l · g-1 · h-1) was less than in young adults about to commence their marine feeding phase (64 l · g-1 · h-1), but greater than in large ammocoetes (26.5 l · g-1 · h-1). Basal oxygen consumption fell progressively during the spawning-run of to 33 l · g-1 · h-1 after 5 months and 25 l · g-1 · h-1 after 10 months, before rising to 35 l · g-1 · h-1 after 15 months when the animals were approaching sexual maturity. The downwards trend in basal oxygen consumption contrasts with that recorded during the spawning run of Lampetra fluviatilis. Furthermore, these values for spawning-run of G. australis are far lower than those measured at any time during the upstream migration of L. fluviatilis or during the parasitic phase of landlocked Petromyzon marinus. A low and declining metabolic rate during much of the spawning run of G. australis would facilitate the conservation of energy reserves during this very long non-feeding period. Trends shown by ventilatory frequency and heart rate essentially parallel those of basal oxygen consumption. The Q10s for basal oxygen consumption, ventilatory frequency and heart rate over the temperature range 5–25°C were 1.6, 1.6, and 1.7, respectively. The trends shown by basal oxygen consumption during metamorphosis and the upstream migration did not parallel those exhibited by circulating thyroid hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号