首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertebrate opsins in both photoreceptors and the retinal pigment epithelium (RPE) have fundamental roles in the visual process. The visual pigments in photoreceptors are bound to 11-cis-retinal and are responsible for the initiation of visual excitation. Retinochrome-like opsins in the RPE are bound to all-trans-retinal and play an important role in chromophore metabolism. The retinal G protein-coupled receptor (RGR) of the RPE and Müller cells is an abundant opsin that generates 11-cis-retinal by stereospecific photoisomerization of its bound all-trans-retinal chromophore. We have analyzed a 32-kDa protein (p32) that co-purifies with bovine RGR from RPE microsomes. The co-purified p32 was identified by mass spectrometric analysis as 11-cis-retinol dehydrogenase (cRDH), and enzymatic assays have confirmed the isolation of an active cRDH. The co-purified cRDH showed marked substrate preference to 11-cis-retinal and preferred NADH rather than NADPH as the cofactor in reduction reactions. cRDH did not react with endogenous all-trans-retinal bound to RGR but reacted specifically with 11-cis-retinal that was generated by photoisomerization after irradiation of RGR. The reduction of 11-cis-retinal to 11-cis-retinol by cRDH enhanced the net photoisomerization of all-trans-retinal bound to RGR. These results indicate that cRDH is involved in the processing of 11-cis-retinal after irradiation of RGR opsin and suggest that cRDH has a novel role in the visual cycle.  相似文献   

2.
Light-dependent production of 11-cis-retinal by the retinal pigment epithelium (RPE) and normal regeneration of rhodopsin under photic conditions involve the RPE retinal G protein-coupled receptor (RGR) opsin. This microsomal opsin is bound to all-trans-retinal which, upon illumination, isomerizes stereospecifically to the 11-cis isomer. In this paper, we investigate the synthesis of the all-trans-retinal chromophore of RGR in cultured ARPE-hRGR and freshly isolated bovine RPE cells. Exogenous all-trans-[(3)H]retinol is incorporated into intact RPE cells and converted mainly into retinyl esters and all-trans-retinal. The intracellular processing of all-trans-[(3)H]retinol results in physiological binding to RGR of a radiolabeled retinoid, identified as all-trans-[(3)H]retinal. The ARPE-hRGR cells contain a membrane-bound NADPH-dependent retinol dehydrogenase that reacts efficiently with all-trans-retinol but not the 11-cis isomer. The NADPH-dependent all-trans-retinol dehydrogenase activity in isolated RPE microsomal membranes can be linked in vitro to specific binding of the chromophore to RGR. These findings provide confirmation that RGR opsin binds the chromophore, all-trans-retinal, in the dark. A novel all-trans-retinol dehydrogenase exists in the RPE and performs a critical function in chromophore biosynthesis.  相似文献   

3.
Visual perception begins with the absorption of a photon by an opsin pigment, inducing isomerization of its 11-cis-retinaldehyde chromophore. After a brief period of activation, the resulting all-trans-retinaldehyde dissociates from the opsin apoprotein rendering it insensitive to light. Restoring light sensitivity to apo-opsin requires thermal re-isomerization of all-trans-retinaldehyde to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle in retinal pigment epithelial (RPE) cells. Vertebrates can see over a 10(8)-fold range of background illumination. This implies that the visual cycle can regenerate a visual chromophore over a similarly broad range. However, nothing is known about how the visual cycle is regulated. Here we show that RPE cells, functionally or physically separated from photoreceptors, respond to light by mobilizing all-trans-retinyl esters. These retinyl esters are substrates for the retinoid isomerase and hence critical for regenerating visual chromophore. We show in knock-out mice and by RNA interference in human RPE cells that this mobilization is mediated by a protein called "RPE-retinal G protein receptor" (RGR) opsin. These data establish that RPE cells are intrinsically sensitive to light. Finally, we show that in the dark, RGR-opsin inhibits lecithin:retinol acyltransferase and all-trans-retinyl ester hydrolase in vitro and that this inhibition is released upon exposure to light. The results of this study suggest that RGR-opsin mediates light-dependent translocation of all-trans-retinyl esters from a storage pool in lipid droplets to an "isomerase pool" in membranes of the endoplasmic reticulum. This translocation permits insoluble all-trans-retinyl esters to be utilized as substrate for the synthesis of a new visual chromophore.  相似文献   

4.
Rod and cone visual pigments use 11-cis-retinal, a vitamin A derivative, as their chromophore. Light isomerizes 11-cis- into all-trans-retinal, triggering a conformational transition of the opsin molecule that initiates phototransduction. After bleaching all-trans-retinal leaves the opsin, and light sensitivity must be restored by regeneration of 11-cis-retinal. Under bright light conditions the retinal G protein-coupled receptor (RGR) was reported to support this regeneration by acting as a photoisomerase in a proposed photic visual cycle. We analyzed the contribution of RGR to rhodopsin regeneration under different light regimes and show that regeneration, during light exposure and in darkness, is slowed about 3-fold in Rgr(-/-) mice. These findings are not in line with the proposed function of RGR as a photoisomerase. Instead, RGR, independent of light, accelerates the conversion of retinyl esters to 11-cis-retinal by positively modulating isomerohydrolase activity, a key step in the "classical" visual cycle. Furthermore, we find that light accelerates rhodopsin regeneration, independent of RGR.  相似文献   

5.
The visual (retinoid) cycle is a fundamental metabolic process in vertebrate retina responsible for production of 11-cis-retinal, the chromophore of rhodopsin and cone pigments. 11-cis-Retinal is bound to opsins, forming visual pigments, and when the resulting visual chromophore 11-cis-retinylidene is photoisomerized to all-trans-retinylidene, all-trans-retinal is released from these receptors. Toxic byproducts of the visual cycle formed from all-trans-retinal often are associated with lipofuscin deposits in the retinal pigmented epithelium (RPE), but it is not clear whether aberrant reactions of the visual cycle participate in RPE atrophy, leading to a rapid onset of retinopathy. Here we report that mice lacking both the ATP-binding cassette transporter 4 (Abca4) and enzyme retinol dehydrogenase 8 (Rdh8), proteins critical for all-trans-retinal clearance from photoreceptors, developed severe RPE/photoreceptor dystrophy at an early age. This phenotype includes lipofuscin, drusen, and basal laminar deposits, Bruch's membrane thickening, and choroidal neovascularization. Importantly, the severity of visual dysfunction and retinopathy was exacerbated by light but attenuated by treatment with retinylamine, a visual cycle inhibitor that slows the flow of all-trans-retinal through the visual cycle. These findings provide direct evidence that aberrant production of toxic condensation byproducts of the visual cycle in mice can lead to rapid, progressive retinal degeneration.  相似文献   

6.
Visual sensation in vertebrates is triggered when light strikes retinal photoreceptor cells causing photoisomerization of the rhodopsin chromophore 11-cis-retinal to all-trans-retinal. The regeneration of preillumination conditions of the photoreceptor cells requires formation of 11-cis-retinal in the adjacent retinal pigment epithelium (RPE). Using the intrinsic fluorescence of all-trans-retinyl esters, noninvasive two-photon microscopy revealed previously uncharacterized structures (6.9 +/- 1.1 microm in length and 0.8 +/- 0.2 microm in diameter) distinct from other cellular organelles, termed the retinyl ester storage particles (RESTs), or retinosomes. These structures form autonomous all-trans-retinyl ester-rich intracellular compartments distinct from other organelles and colocalize with adipose differentiation-related protein. As demonstrated by in vivo experiments using wild-type mice, the RESTs participate in 11-cis-retinal formation. RESTs accumulate in Rpe65-/- mice incapable of carrying out the enzymatic isomerization, and correspondingly, are absent in the eyes of Lrat-/- mice deficient in retinyl ester synthesis. These results indicate that RESTs located close to the RPE plasma membrane are essential components in 11-cis-retinal production.  相似文献   

7.
In animals, visual pigments are essential for photoreceptor function and survival. These G-protein-coupled receptors consist of a protein moiety (opsin) and a covalently bound 11-cis-retinylidene chromophore. The chromophore is derived from dietary carotenoids by oxidative cleavage and trans-to-cis isomerization of double bonds. In vertebrates, the necessary chemical transformations are catalyzed by two distinct but structurally related enzymes, the carotenoid oxygenase β-carotenoid-15,15′-monooxygenase and the retinoid isomerase RPE65 (retinal pigment epithelium protein of 65 kDa). Recently, we provided biochemical evidence that these reactions in insects are catalyzed by a single enzyme family member named NinaB. Here we show that in the fly pathway, carotenoids are mandatory precursors of the chromophore. After chromophore formation, the retinoid-binding protein Pinta acts downstream of NinaB and is required to supply photoreceptors with chromophore. Like ninaE encoding the opsin, ninaB expression is eye-dependent and is activated as a downstream target of the eyeless/pax6 and sine oculis master control genes for eye development. The requirement for coordinated synthesis of chromophore and opsin is evidenced by analysis of ninaE mutants. Retinal degeneration in opsin-deficient photoreceptors is caused by the chromophore and can be prevented by restricting its supply as seen in an opsin and chromophore-deficient double mutant. Thus, our study identifies NinaB as a key component for visual pigment production and provides evidence that chromophore in opsin-deficient photoreceptors can elicit retinal degeneration.  相似文献   

8.
The retinal G protein-coupled receptor (RGR) is a protein that structurally resembles visual pigments and other G protein-coupled receptors. RGR may play a role as a photoisomerase in the production of 11-cis-retinal, the chromophore of the visual pigments. As the proposed function of RGR, in a complex with 11-cis-retinol dehydrogenase (RDH5), is to regenerate 11-cis-retinal under light conditions and RDH5 is expected to function in the light-independent part of the retinoid cycle, we speculated that the simultaneous loss of function of both proteins should more severely affect the rhodopsin regeneration capacity. Here, we evaluated the role of RGR using rgr-/- single and rdh5-/-rgr-/- double knockout mice under a number of light conditions. The most striking phenotype of rgr-/- mice after a single flash of light includes light-dependent formation of 9-cis- and 13-cis-retinoid isomers. These isomers are not formed in wild-type mice because either all-trans-retinal is bound to RGR and protected from isomerization to 9-cis- or 13-cis-retinal or because RGR is able to eliminate these isomers directly or indirectly. After intense bleaching, a transient accumulation of all-trans-retinyl esters and an attenuated recovery of 11-cis-retinal were observed. Finally, even under conditions of prolonged light illumination, as investigated in vitro in biochemical assays or in vivo by electroretinogram (ERG) measurements, no evidence of catalytic-like photoisomerization-driven production of 11-cis-retinal could be attained. These and previous results suggest that RGR and RDH5 are likely to function in the retinoid cycle, although their role is not essential and regeneration of visual pigment is only mildly affected by the absence of both proteins in rod-dominated mice.  相似文献   

9.
The vertebrate retina contains typical photoreceptor (PR) cones and rods responsible for day/night vision, respectively, and intrinsically photosensitive retinal ganglion cells (ipRGCs) involved in the regulation of non-image-forming tasks. Rhodopsin/cone opsin photopigments in visual PRs or melanopsin (Opn4) in ipRGCs utilizes retinaldehyde as a chromophore. The retinoid regeneration process denominated as “visual cycle” involves the retinal pigment epithelium (RPE) or Müller glial cells. Opn4, on the contrary, has been characterized as a bi/tristable photopigment, in which a photon of one wavelength isomerizes 11-cis to all-trans retinal (Ral), with a second photon re-isomerizing it back. However, it is unknown how the chromophore is further metabolized in the inner retina. Nor is it yet clear whether an alternative secondary cycle occurs involving players such as the retinal G-protein-coupled receptor (RGR), a putative photoisomerase of unidentified inner retinal activity. Here, we investigated the role of RGR in retinoid photoisomerization in Opn4x (Xenopus ortholog) (+) RGC primary cultures free of RPE and other cells from chicken embryonic retinas. Opn4x (+) RGCs display significant photic responses by calcium fluorescent imaging and photoisomerize exogenous all-trans to 11-cis Ral and other retinoids. RGR was found to be expressed in developing retina and in primary cultures; when its expression was knocked down, the levels of 11-cis, all-trans Ral, and all-trans retinol in cultures exposed to light were significantly higher and those in all-trans retinyl esters lower than in dark controls. The results support a novel role for RGR in ipRGCs to modulate retinaldehyde levels in light, keeping the balance of inner retinal retinoid pools.  相似文献   

10.
Both enantiomers of 13-(E) and 13-(Z) isomers of 11-cis-locked bicyclo[5.1.0]octanyl retinal were prepared by an improved synthesis and incubated with bovine opsin. The synthesis also establishes the absolute configuration of the enantiomers. Only one of the enantiomers binds to opsin, thus showing the steric restrictions regarding the middle polyene moiety of the retinoid molecule; this is in sharp contrast to the known leniency of the ring moiety binding site of retinoids. However, although one enantiomer is incorporated into the pigment, the circular dichroic spectrum of the pigment incorporating the bound enantiomer yields only a very weak Cotton effect, showing that, once incorporated, the bicyclo[5.1.0]octanyl chromophore is flattened by the opsin binding site. The titled retinoid was synthesized for study of the absolute conformation of the retinal pigment in rhodopsin.  相似文献   

11.
Regeneration of the visual chromophore, 11-cis-retinal, is a critical step in restoring photoreceptors to their dark-adapted conditions. This regeneration process, called the retinoid cycle, takes place in the photoreceptor outer segments and the retinal pigment epithelium (RPE). Disabling mutations in nearly all of the retinoid cycle genes are linked to human conditions that cause congenital or progressive defects in vision. Several mouse models with disrupted genes related to this cycle contain abnormal fatty acid retinyl ester levels in the RPE. To investigate the mechanisms of retinyl ester accumulation, we generated single or double knockout mice lacking retinoid cycle genes. All-trans-retinyl esters accumulated in mice lacking RPE65, but they are reduced in double knockout mice also lacking opsin, suggesting a connection between visual pigment regeneration and the retinoid cycle. Only Rdh5-deficient mice accumulate cis-retinyl esters, regardless of the simultaneous disruption of RPE65, opsin, and prRDH. 13-cis-Retinoids are produced at higher levels when the flow of retinoid through the cycle was increased, and these esters are stored in specific structures called retinosomes. Most importantly, retinylamine, a specific and effective inhibitor of the 11-cis-retinol formation, also inhibits the production of 13-cis-retinyl esters. The data presented here support the idea that 13-cis-retinyl esters are formed through an aberrant enzymatic isomerization process.  相似文献   

12.
Deactivation of light-activated rhodopsin (metarhodopsin II) involves, after rhodopsin kinase and arrestin interactions, the hydrolysis of the covalent bond of all-trans-retinal to the apoprotein. Although the long-lived storage form metarhodopsin III is transiently formed, all-trans-retinal is eventually released from the active site. Here we address the question of whether the release results in a retinal that is freely diffusible in the lipid phase of the photoreceptor membrane. The release reaction is accompanied by an increase in intrinsic protein fluorescence (release signal), which arises from the relief of the fluorescence quenching imposed by the retinal in the active site. An analogous fluorescence decrease (uptake signal) was evoked by exogenous retinoids when they non-covalently bound to native opsin membranes. Uptake of 11-cis-retinal was faster than formation of the retinylidene linkage to the apoprotein. Endogenous all-trans-retinal released from the active site during metarhodopsin II decay did not generate the uptake signal. The data show that in addition to the retinylidene pocket (site I) there are two other retinoidbinding sites within opsin. Site II involved in the uptake signal is an entrance site, while the exit site (site III) is occupied when retinal remains bound after its release from site I. Support for a retinal channeling mechanism comes from the rhodopsin crystal structure, which unveiled two putative hydrophobic binding sites. This mechanism enables a unidirectional process for the release of photoisomerized chromophore and the uptake of newly synthesized 11-cis-retinal for the regeneration of rhodopsin.  相似文献   

13.
Recovery of visual functions in a mouse model of Leber congenital amaurosis   总被引:5,自引:0,他引:5  
The visual process is initiated by the photoisomerization of 11-cis-retinal to all-trans-retinal. For sustained vision the 11-cis-chromophore must be regenerated from all-trans-retinal. This requires RPE65, a dominant retinal pigment epithelium protein. Disruption of the RPE65 gene results in massive accumulation of all-trans-retinyl esters in the retinal pigment epithelium, lack of 11-cis-retinal and therefore rhodopsin, and ultimately blindness. We reported previously (Van Hooser, J. P., Aleman, T. S., He, Y. G., Cideciyan, A. V., Kuksa, V., Pittler, S. J., Stone, E. M., Jacobson, S. G., and Palczewski, K. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 8623-8628) that in Rpe65-/- mice, oral administration of 9-cis-retinal generated isorhodopsin, a rod photopigment, and restored light sensitivity to the electroretinogram. Here, we provide evidence that early intervention by 9-cis-retinal administration significantly attenuated retinal ester accumulation and supported rod retinal function for more than 6 months post-treatment. In single cell recordings rod light sensitivity was shown to be a function of the amount of regenerated isorhodopsin; high doses restored rod responses with normal sensitivity and kinetics. Highly attenuated residual rod function was observed in untreated Rpe65-/- mice. This rod function is likely a consequence of low efficiency production of 11-cis-retinal by photo-conversion of all-trans-retinal in the retina as demonstrated by retinoid analysis. These studies show that pharmacological intervention produces long lasting preservation of visual function in dark-reared Rpe65-/- mice and may be a useful therapeutic strategy in recovering vision in humans diagnosed with Leber congenital amaurosis caused by mutations in the RPE65 gene, an inherited group of early onset blinding and retinal degenerations.  相似文献   

14.
The regeneration of 11-cis-retinal, the universal chromophore of the vertebrate retina, is a complex process involving photoreceptors and adjacent retinal pigment epithelial cells (RPE). 11-cis-Retinal is coupled to opsins in both rod and cone photoreceptor cells and is photoisomerized to all-trans-retinal by light. Here, we show that RPE microsomes can catalyze the reverse isomerization of 11-cis-retinol to all-trans-retinol (and 13-cis-retinol), and membrane exposure to UV light further enhances the rate of this reaction. This conversion is inhibited when 11-cis-retinol is in a complex with cellular retinaldehyde-binding protein (CRALBP), providing a clear demonstration of the protective effect of retinoid-binding proteins in retinoid processes in the eye, a function that has been long suspected but never proven. The reverse isomerization is nonenzymatic and specific to alcohol forms of retinoids, and it displays stereospecific preference for 11-cis-retinol and 13-cis-retinol but is much less efficient for 9-cis-retinol. The mechanism of reverse isomerization was investigated using stable isotope-labeled retinoids and radioactive tracers to show that this reaction occurs with the retention of configuration of the C-15 carbon of retinol through a mechanism that does not eliminate the hydroxyl group, in contrast to the enzymatic all-trans-retinol to 11-cis-retinol reaction. The activation energy for the conversion of 11-cis-retinol to all-trans-retinol is 19.5 kcal/mol, and 20.1 kcal/mol for isomerization of 13-cis-retinol to all-trans-retinol. We also demonstrate that the reverse isomerization occurs in vivo using exogenous 11-cis-retinol injected into the intravitreal space of wild type and Rpe65-/- mice, which have defective forward isomerization. This study demonstrates an uncharacterized activity of RPE microsomes that could be important in the normal flow of retinoids in the eye in vivo during dark adaptation.  相似文献   

15.
Vertebrate rhodopsin consists of the apoprotein opsin and the chromophore 11-cis-retinal covalently linked via a protonated Schiff base. Upon photoisomerization of the chromophore to all-trans-retinal, the retinylidene linkage hydrolyzes, and all-trans-retinal dissociates from opsin. The pigment is eventually restored by recombining with enzymatically produced 11-cis-retinal. All-trans-retinal release occurs in parallel with decay of the active form, metarhodopsin (Meta) II, in which the original Schiff base is intact but deprotonated. The intermediates formed during Meta II decay include Meta III, with the original Schiff base reprotonated, and Meta III-like pseudo-photoproducts. Using an intrinsic fluorescence assay, Fourier transform infrared spectroscopy, and UV-visible spectroscopy, we investigated Meta II decay in native rod disk membranes. Up to 40% of Meta III is formed without changes in the intrinsic Trp fluorescence and thus without all-trans-retinal release. NADPH, a cofactor for the reduction of all-trans-retinal to all-trans-retinol, does not accelerate Meta II decay nor does it change the amount of Meta III formed. However, Meta III can be photoconverted back to the Meta II signaling state. The data are described by two quasi-irreversible pathways, leading in parallel into Meta III or into release of all-trans-retinal. Therefore, Meta III could be a form of rhodopsin that is stored away, thus regulating photoreceptor regeneration.  相似文献   

16.
In visual pigments, opsin proteins regulate the spectral absorption of a retinal chromophore by mechanisms that change the energy level of the excited electronic state relative to the ground state. We have studied these mechanisms by using photocurrent recording to measure the spectral sensitivities of individual red rods and red (long-wavelength-sensitive) and blue (short-wavelength-sensitive) cones of salamander before and after replacing the native 3-dehydro 11-cis retinal chromophore with retinal analogs: 11-cis retinal, 3-dehydro 9-cis retinal, 9-cis retinal, and 5,6-dihydro 9-cis retinal. The protonated Schiff's bases of analogs with unsaturated bonds in the ring had broader spectra than the same chromophores bound to opsins. Saturation of the bonds in the ring reduced the spectral bandwidths of the protonated Schiff's bases and the opsin-bound chromophores and made them similar to each other. This indicates that torsion of the ring produces spectral broadening and that torsion is limited by opsin. Saturating the 5,6 double bond in retinal reduced the perturbation of the chromophore by opsin in red and in blue cones but not in red rods. Thus an interaction between opsin and the chromophoric ring shifts the spectral maxima of the red and blue cone pigments, but not that of the red rod pigment.  相似文献   

17.
Fourier-transform infrared difference spectroscopy has been used to detect the vibrational modes in the chromophore and protein that change in position and intensity between octopus rhodopsin and its photoproducts formed at low temperature (85 K), bathorhodopsin and isorhodopsin. The infrared difference spectra between octopus rhodopsin and octopus bathorhodopsin, octopus bathorhodopsin and octopus isorhodopsin, and octopus isorhodopsin and octopus rhodopsin are compared to analogous difference spectra for the well-studied bovine pigments, in order to understand the similarities in pigment structure and photochemical processes between the vertebrate and invertebrate systems. The structure-sensitive fingerprint region of the infrared spectra for octopus bathorhodopsin shows strong similarities to spectra of both all-trans-retinal and bovine bathorhodopsin, thus confirming chemical extraction data that suggest that octopus bathorhodopsin contains an all-trans-retinal chromophore. In contrast, we find dramatic differences in the hydrogen out-of-plane modes of the two bathorhodopsins, and in the fingerprint lines of the rhodopsins and isorhodopsins for the two pigments. These observations suggest that while the primary effect of light in the octopus rhodopsin system, as in the bovine rhodopsin system, is 11-cis/11-trans isomerization, the protein-chromophore interactions for the two systems are quite different. Finally, striking similarities and differences in infrared lines attributable to changes in amino acid residues in the opsin are found between the two pigment systems. They suggest that no carboxylic acid or tyrosine residues are affected in the initial changes of light-energy transduction in octopus rhodopsin. Comparing the amino acid sequences for octopus and bovine pigments also allows us to suggest that the carboxylic acid residues altered in the bovine transitions are Glu-122 and/or Glu-134.  相似文献   

18.
Invertebrates such as Drosophila or Limulus assemble their visual pigment into the specialized rhabdomeric membranes of photoreceptors where phototransduction occurs. We have investigated the biosynthesis of rhodopsin from the Limulus lateral eye with three cell culture expression systems: mammalian COS1 cells, insect Sf9 cells, and amphibian Xenopus oocytes. We extracted and affinity-purified epitope-tagged Limulus rhodopsin expressed from a cDNA or cRNA from these systems. We found that all three culture systems could efficiently synthesize the opsin polypeptide in quantities comparable with that found for bovine opsin. However, none of the systems expressed a protein that stably bound 11-cis-retinal. The protein expressed in COS1 and Sf9 cells appeared to be misfolded, improperly localized, and proteolytically degraded. Similarly, Xenopus oocytes injected with Limulus opsin cRNA did not evoke light-sensitive currents after incubation with 11-cis-retinal. However, injecting Xenopus oocytes with mRNA from Limulus lateral eyes yielded light-dependent conductance changes after incubation with 11-cis-retinal. Also, expressing Limulus opsin cDNA in the R1-R6 photoreceptors of transgenic Drosophila yielded a visual pigment that bound retinal, had normal spectral properties, and coupled to the endogenous phototransduction cascade. These results indicate that Limulus opsin may require one or more photoreceptor-specific proteins for correct folding and/or chromophore binding. This may be a general property of invertebrate opsins and may underlie some of the functional differences between invertebrate and vertebrate visual pigments.  相似文献   

19.
The retinal analogue beta-ionone was used to investigate possible physiological effects of the noncovalent interaction between rod opsin and its chromophore 11-cis retinal. Isolated salamander rod photoreceptors were exposed to bright light that bleached a significant fraction of their pigment, were allowed to recover to a steady state, and then were exposed to beta-ionone. Our experiments show that in bleach-adapted rods beta-ionone causes a decrease in light sensitivity and dark current and an acceleration of the dim flash photoresponse and the rate constants of guanylyl cyclase and cGMP phosphodiesterase. Together, these observations indicate that in bleach-adapted rods beta-ionone activates phototransduction in the dark. Control experiments showed no effect of beta-ionone in either fully dark-adapted or background light-adapted cells, indicating direct interaction of beta-ionone with the free opsin produced by bleaching. We speculate that beta-ionone binds specifically in the chromophore pocket of opsin to produce a complex that is more catalytically potent than free opsin alone. We hypothesize that a similar reaction may occur in the intact retina during pigment regeneration. We propose a model of rod pigment regeneration in which binding of 11-cis retinal to opsin leads to activation of the complex accompanied by a decrease in light sensitivity. The subsequent covalent attachment of retinal to opsin completely inactivates opsin and leads to the recovery of sensitivity. Our findings resolve the conflict between biochemical and physiological data concerning the effect of the occupancy of the chromophore binding site on the catalytic potency of opsin. We show that binding of beta-ionone to rod opsin produces effects opposite to its previously described effects on cone opsin. We propose that this distinction is due to a fundamental difference in the interaction of rod and cone opsins with retinal, which may have implications for the different physiology of the two types of photoreceptors.  相似文献   

20.
Cones recover their photosensitivity faster than rods after bleaching. It has been suggested that a higher rate regeneration of 11-cis-retinal, the chromophore for visual pigments, is required for cones to continuously function under bright light conditions. RPE65 is the isomerohydrolase catalyzing a key step in regeneration of 11-cis-retinal. The present study investigated whether RPE65 in a cone-dominant species is more efficient in its enzymatic activity than that from roddominant species. In vitro isomerohydrolase activity assay showed that isomerohydrolase activity in the chicken retinal pigment epithelium (RPE) was 11.7-fold higher than in the bovine RPE, after normalization by RPE65 protein levels. Similar to that of human and bovine, the isomerohydrolase activity in chicken RPE was blocked by two specific inhibitors of lecithin retinal acyltransferase, indicating that chicken RPE65 also uses all-trans-retinyl ester as the direct substrate. To exclude the possibility that the higher isomerohydrolase activity in the chicken RPE could arise from another unknown isomerohydrolase, we expressed chicken and human RPE65 using the adenovirus system in a stable cell line expressing lecithin retinal acyltransferase. Under the same conditions, isomerohydrolase activity of recombinant chicken RPE65 was 7.7-fold higher than that of recombinant human RPE65, after normalization by RPE65 levels. This study demonstrates that RPE65 from the cone-dominant chicken RPE possesses significantly higher specific retinol isomerohydrolase activity, when compared with RPE65 from rod-dominant species, consistent with the faster regeneration rates of visual pigments in cone-dominant retinas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号