首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
De novo pyrimidine synthesis was studied in mouse liver, intestine, and kidney by intraperitoneal infusion of 15NH4Cl and analysis of 15N incorporation into uracil nucleotide pools. When the dose of a 1-h infusion of 15NH4Cl was increased from 50 mumol to 250 mumol the fraction of the total uracil nucleotide pool formed by de novo synthesis increased 4.0-fold in liver to 8.4% and 2.3-fold in intestine to 13.7%. The increase in intestine was independent of the increase in liver as evidenced by the lack of correlation between the increase observed in the intestine and liver of the same animal and the different distributions of label in the uracil ring nitrogens. A 2.4-fold increase in newly formed uracil nucleotides was observed in kidney when the infusion dose was raised from 150 mumol to 250 mumol. The increase in kidney was correlated with the increase in liver in the same animal and the distribution of label in the uracil ring nitrogens was similar to the distribution in liver. These results suggest that the increase in newly formed uracil nucleotides in intestine is due to increased de novo synthesis of pyrimidines in the intestine, while the increase in the kidney is due to increased salvage synthesis of uracil nucleotides from uridine synthesized in the liver and output to the circulation.  相似文献   

2.
The concentration of uridine in the media of cultured L1210 cells was maintained within the concentration range found in plasma (1 to 10 microM) to determine if such concentrations are sufficient to satisfy the pyrimidine requirements of a population of dividing cells and to determine if cells utilize de novo and/or salvage pathways when exposed to plasma concentrations of uridine. When cells were incubated in the presence of N-(phosphonacetyl)-L-aspartate to block de novo biosynthesis, plasma concentrations of uridine maintained normal cell growth. De novo pyrimidine biosynthesis, as determined by [14C]sodium bicarbonate incorporation into uracil nucleotides, was affected by the low concentrations of uridine found in the plasma. Below 1 microM uridine, de novo biosynthesis was not affected; between 3 and 5 microM uridine, de novo biosynthesis was inhibited by approximately 50%; and above 12 microM uridine, de novo biosynthesis was inhibited by greater than 95%. Inhibition of de novo biosynthesis correlated with an increase in the uracil nucleotide pool. The de novo pathway was much more sensitive to the uracil nucleotide pool size than was the salvage pathway, such that when de novo biosynthesis was inhibited by greater than 95% the uracil nucleotide pool continued to expand and the cells continued to take up [14C]uridine. Thus, the pyrimidine requirements of cultured L1210 cells can be met by concentrations of uridine found in the plasma and, when exposed to such physiologic concentrations, L1210 cells decrease their dependency on de novo biosynthesis and utilize their salvage pathway. Circulating uridine, therefore, may be of physiologic importance and could be an important determinant in anti-pyrimidine chemotherapy.  相似文献   

3.
The site of feedback inhibition of the biosynthesis of pyrimidine nucleotides de novo was investigated in the isolated perfused rat liver. Hepatic uridine phosphate contents were specifically depleted by use of D-galactosamine. The effective activities of enzymes involved in the synthetic pathway were deduced from the rats of incorporation of labeled precursors into the acid-soluble uracil nucleotide pool and into some intermediates of the pathway. The labeling of hepatic urea was also monitored. When the uridine phosphate contents were less than 20% of controls, the incorporation of [14-C]-bicarbonate was stimulated about 20-fold. Label from [U-14C]oxaloacetate used as permeable precursor of intrace-lular aspartate was introduced into the uridylates to the same extent in normal and UTP-depleted livers. Similar results were obtained with labeled carbamoyl phosphate although the uptake of this compound by the liver was rather low. The lack of labeling of urea from exogenous carbamoyl phosphate does not indicate a free exchange of extra- and intramitochondrial carbamoyl phosphate. [ureido-14C]Ureidosuccinate produced in normal and D-galactosamine-treated livers almost identical labeling patterns of dihydroorotate, orotate and orotidine 5'-phosphate. The steady state concentrations of these intermediates were all below 15 nmol/g liver wet weight.  相似文献   

4.
Summary Callus cultures derived from roots of summer squash (Cucurbita pepo L. c.v. Early Prolific Straightneck) grown in the dark at 27° C on Murashige and Skoog medium supplemented per liter with 30 g sucrose, 100 mg myo-inositol, 10 mg indole-butyric acid, 2 mg glycine, 1 mg thiamin, 0.5 mg nicotinic acid, 0.5 mg pyridoxine, and 2 g Gelrite were capable of synthesizing pyrimidine nucleotides both de novo and through salvage of existing pyrimidine nucleotides and bases. Evidence that the de novo biosynthesis of pyrimidine nucleotides proceeded via the orotate pathway in this tissue included: (a) demonstration of the incorporation of NaH14CO3 and [14C6]orotic acid into uridine nucleotides (ΣUMP), and (b) demonstration that the addition of 6-azauridine blocked the incorporation of these two precursors into ΣUMP. The synthesis of pyrimidine nucleotides through the salvage of existing pyrimidine bases and ribosides was demonstrated by measuring the incorporation of [14C2]uracil and [14C2]uridine into ΣUMP. Salvage of both [14C2]uracil and [14C2]uridine was sensitive to inhibition by 6-azauridine or one of its metabolites. The orotic acid pathway for the de novo biosynthesis of pyrimidine nucleotides was demonstrated to be sensitive to end-product inhibition. Uridine, or one of its metabolites, inhibited the incorporation of NaH14CO3, but not [14C6]orotic acid, into ΣUMP. Evidence is presented suggesting that Aspartate carbomoyltransferase is the site of feedback control. This work was supported by the Citrus Research Center and Agricultural Experiment Station of the University of California, Riverside, CA. Submitted in partial fulfillment of the requirements of the University of California for the Master of Science degree in botany (F-F.L.)  相似文献   

5.
Gas chromatographic/mass spectrometric methods for the measurement of the flux through the de novo pyrimidine biosynthetic pathway by quantitating the incorporation of [13C]bicarbonate and 13CO2 into the uracil nucleotide pool in L1210 tumors are reported. Simultaneous measurements of the incorporation of [13C]bicarbonate and the more commonly used [14C]bicarbonate into uridine of L1210 cells in vitro showed that the two methods were comparable. A modification of the method was applied to in vivo studies where the incorporation of 13CO2 into the uracil nucleotide pool of L1210 tumors in mice was quantitated. The measurements were used to determine changes in the flux through the de novo pyrimidine pathway in animals pretreated with known inhibitors of the pathway. A comparison of control animals with those pretreated with 6-azauridine, acivicin, and pyrazofurin resulted in mean percentage inhibitions of 87, 95, and 94%, respectively. This technique should allow investigation of the respective contributions of salvage and de novo synthesis in the formation of pyrimidines in vivo and the effects of agents designed as enzyme inhibitors of the de novo pathway.  相似文献   

6.
Giardia lamblia, an aerotolerant anaerobe, respires in the presence of oxygen by a flavin, iron-sulfur protein-mediated electron transport system. Glucose appears to be the only sugar catabolized by the Embden-Meyerhof-Parnas and hexose monophosphate pathways, and energy is produced by substrate level phosphorylation. Substrates are incompletely oxidized to CO2, ethanol and acetate by nonsedimentable enzymes. The lack of incorporation of inosine, hypoxanthine, xanthine, formate or glycine into nucleotides indicates an absence of de novo purine synthesis. Only adenine, adenosine, guanine and guanosine are salvaged, and no interconversion of these purines was detected. Salvage of these purines and their nucleosides is accomplished by adenine phosphoribosyltransferase, adenosine hydrolase, guanosine phosphoribosyltransferase and guanine hydrolase. The absence of de novo pyrimidine synthesis was confirmed by the lack of incorporation of bicarbonate, orotate and aspartate into nucleotides, and by the lack of detectable levels of the enzymes of de novo pyrimidine synthesis. Salvage appears to be accomplished by the action of uracil phosphoribosyltransferase, uridine hydrolase, uridine phosphotransferase, cytidine deaminase, cytidine hydrolase, cytosine phosphoribosyltransferase and thymidine phosphotransferase. Nucleotides of uracil may be converted to nucleotides of cytosine by cytidine triphosphate synthetase, but thymidylate synthetase and dihydrofolate reductase activities were not detected. Uptake of pyrmidine nucleosides, and perhaps pyrimidines, appears to be accomplished by carrier-mediated transport, and the common site for uptake of uridine and cytidine is distinct from the site for thymidine. Thymine does not appear to be incorporated into nucleotide pools. Giardia trophozoites appear to rely on preformed lipids rather than synthesizing them de novo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Katahira R  Ashihara H 《Planta》2002,215(5):821-828
In order to obtain general metabolic profiles of pyrimidine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, the in situ metabolic fate of various (14)C-labelled precursors in disks from growing potato tubers was investigated. The activities of key enzymes in potato tuber extracts were also studied. The following results were obtained. Of the intermediates in de novo pyrimidine biosynthesis, [(14)C]carbamoylaspartate was converted to orotic acid and [2-(14)C]orotic acid was metabolized to nucleotides and RNA. UMP synthase, a bifunctional enzyme with activities of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate decarboxylase (EC 4.1.1.23), exhibited high activity. The rates of uptake of pyrimidine ribo- and deoxyribonucleosides by the disks were high, in the range 2.0-2.8 nmol (g FW)(-1) h(-1). The pyrimidine ribonucleosides, uridine and cytidine, were salvaged exclusively to nucleotides, by uridine/cytidine kinase (EC 2.7.1.48) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Cytidine was also salvaged after conversion to uridine by cytidine deaminase (EC 3.5.4.5) and the presence of this enzyme was demonstrated in cell-free tuber extracts. Deoxycytidine, a deoxyribonucleoside, was efficiently salvaged. Since deoxycytidine kinase (EC 2.7.1.74) activity was extremely low, non-specific nucleoside phosphotransferase (EC 2.7.1.77) probably participates in deoxycytidine salvage. Thymidine, which is another pyrimidine deoxyribonucleoside, was degraded and was not a good precursor for nucleotide synthesis. Virtually all the thymidine 5'-monophosphate synthesis from thymidine appeared to be catalyzed by phosphotransferase activity, since little thymidine kinase (EC 2.7.1.21) activity was detected. Of the pyrimidine bases, uracil, but not cytosine, was salvaged for nucleotide synthesis. Since uridine phosphorylase (EC 2.4.2.3) activity was not detected, uracil phosphoribosyltransferase (EC 2.4.2.9) seems to play the major role in uracil salvage. Uracil was degraded by the reductive pathway via beta-ureidopropionate, but cytosine was not degraded. The activities of the cytosine-metabolizing enzymes observed in other organisms, pyrimidine nucleoside phosphorylase (EC 2.4.2.2) and cytosine deaminase (EC 3.5.4.1), were not detected in potato tuber extracts. Operation of the de novo synthesis of deoxyribonucleotides via ribonucleotide reductase and of the salvage pathway of deoxycytidine was demonstrated via the incorporation of radioactivity from both [2-(14)C]cytidine and [2-(14)C]deoxycytidine into DNA. A novel pathway converting deoxycytidine to uracil nucleotides was found and deoxycytidine deaminase (EC 3.5.4.14), an enzyme that may participate in this pathway, was detected in the tuber extracts.  相似文献   

8.
The incorporation of pyrimidine nucleotide precursors into Helicobacter pylori and the activities of enzymes involved in their synthetic pathways were investigated by radioactive tracer analysis and 31P nuclear magnetic resonance spectroscopy. The bacterium was found to take up aspartate and bicarbonate and to incorporate carbon atoms from these precursors into its genomic DNA. Orotate, an intermediate of de novo pyrimidine biosynthesis, and uracil and uridine, precursors for pyrimidine pathways, were also incorporated by the micro-organism. Radiolabelled substrates were used to assess the activities of aspartate transcarbamoylase, orotate phosphoribosyltransferase, orotidylate decarboxylase, CTP synthetase, uracil phosphoribosyltransferase, thymidine kinase and deoxycytidine kinase in bacterial lysates. The study provided evidence for the presence in H. pylori of an operational de novo pathway, and a less active salvage pathway for the biosynthesis of pyrimidine nucleotides.  相似文献   

9.
The amount of newly synthesized uracil nucleotides in mouse liver and intestine was determined by analysis of 15N incorporation into the uracil nucleotide pool of these tissues after intraperitoneal infusion of 15N-labelled amino acids. The appearance of newly synthesized uracil nucleotides was linear with time, and essentially independent of the rate of infusion of L-[15N]alanine. Varying the amino acid used in the infusion could affect the enrichment in the uracil ring nitrogens, but had no significant effect on the calculated amount of de novo synthesis. These results demonstrate the utility of this method in measuring de novo uracil nucleotide synthesis in mouse liver and intestine in vivo. The method should be a valuable tool in the effort to understand the regulation and pharmacological manipulation of de novo uracil nucleotide synthesis.  相似文献   

10.
Human peripheral lymphocytes were incubated with Phaseolus vulgaris phytohemagglutinin. The induction of glutamine-utilizing carbamyl phosphate synthetase (EC 2.7.2.5) and aspartate transcarbamylase (EC 2.1.3.2) for pyrimidine biosynthesis de novo and the induction of uridine kinase were observed as described previously (Ito, K., and Uchino, H. (1971) J. Biol. Chem. 246, 4060-4065; Ito, K., and Uchino, H. (1973) J. Biol. Chem. 248, 389-392; Lucas, Z.J. (1967) Science 156, 1237-1240). By the addition of 1 mM guanine to the culture, the induction of the former two enzymes was inhibited, while that of uridine kinase was not, and even accelerated. An increase in the rate of [14C] bicarbonate incorporation into the acid-soluble uridine nucleotides via the de novo pathway for pyrimidine biosynthesis after phytohemagglutinin stimulation was inhibited by guanine, the incorporation rate being almost at the level of the control culture without phytohemagglutinin. Guanosine had a similar effect on pyrimidine biosynthesis. The induction of the three enzymes mentioned above was completely inhibited by adenine (1 mM). Guanine and guanosine seem to have a unique inhibitory effect on the induction of glutamine-utilizing carbamyl phosphate synthetase and aspartate transcarbamylase.  相似文献   

11.
Metabolic inhibitors which act in the process of pyrimidine salvage influenced on the uracil incorporation into nucleic acids of Toxoplasma. Inhibitors of dihydrofolate reductase, pyrimethamine and methotrexate, and inhibitors of thymidylate synthase, fluoro-uridine, fluoro-dUMP and fluoro-uracil, diminished isotopic uracil uptake in dose-dependent manners. Azauridine which suppresses de novo pyrimidine biosynthesis did not affect the salvage even in a relatively high dose. These results suggested that the activation of uracil salvage should be closely related with the function of TMP biosynthetic enzymes. The pattern of thymidine uptake had no differences between control HL-60 cells and Toxoplasma infected cells, which did not reflect the specific proliferation of Toxoplasma. It can be exploited to characterize the effects of various compounds related with the proliferation of Toxoplasma, especially its DNA synthesis.  相似文献   

12.
Changes in the pattern of pyrimidine nucleotide metabolism were investigated in Pinus radiata cotyledons cultured under shoot-forming (SF; +N(6)-benzyladenine) and non-shoot-forming (NSF, -N(6)-benzyladenine) conditions, as well as in cotyledons unresponsive (OLD) to N(6)-benzyladenine. This was carried out by following the metabolic fate of externally supplied (14)C-labeled orotic acid, intermediate of the de novo pathway, and (14)C-labeled uridine and uracil, substrates of the salvage pathway. Nucleic acid synthesis was also investigated by following the metabolic fate of (14)C-labeled thymidine during shoot bud formation and development. The de novo synthesis of pyrimidine nucleotides was operative under both SF and NSF conditions, and the activity of orotate phosphoribosyltransferase (OPRT), a key enzyme of the de novo pathway, was higher in SF tissue. Utilization of both uridine and uracil for nucleotide and nucleic acid synthesis clearly indicated that the salvage pathway of pyrimidine metabolism is also operative during shoot organogenesis. In general, uridine was a better substrate for the synthesis of salvage products than uracil, possibly due to the higher activity of uridine kinase (UK), compared to uracil phosphoribosyltransferase (UPRT). Incorporation of uridine into the nucleic acid fraction of OLD cotyledons was lower than that observed for their responsive (day 0) counterparts. Similarly, uracil utilization for nucleic acid synthesis was lower in NSF cotyledons, compared to that observed for SF tissue after 10 days in culture. This difference was ascribed to higher UPRT activity measured in the latter. Thus, there was an apparent difference in the utilization of nucleotides derived from uracil and uridine for nucleotide synthesis. The increased ability to produce pyrimidine nucleotides via the salvage pathway during shoot bud formation may be required in support of nucleic acid synthesis occurring during the process. Studies on thymidine metabolism confirmed this notion.  相似文献   

13.
1. Slices of spleen from anaemic mice were incubated with [14C]bicarbonate in the presence and absence of 6-azauridine and the amounts of 14C that entered the de novo pyrimidine biosynthetic pathway were assessed and compared. Compounds analyzed included carbamoylaspartate, dihydroorotate, orotate plus its derivatives, acid-soluble uracil and cytosine 5'-nucleotides, nucleic acid pyrimidines, free pyrimidine bases and nucleosides. As the intracellular levels of carbamoyl phosphate and acid-soluble deoxyribonucleotides are known to be relatively low, the radioactivities of these compounds were not measured. Degradation of labelled uridine was limited in this tissues, therefore the radioactivity of degradative products of pyrimidines was not considered. 2. When the slices were incubated with 0.5 mM 6-azauridine for 10 min and then with [14C]bicarbonate for an additional 10 min and 30 min, the sum of radioactivity found in the above compounds, which represents the total amount of 14C that entered the pyrimidine pathway, was 2.1 and 2.3 times greater than when the tissue slices were incubated in the absence of the analogue. 3. When the 14C distribution among the carbon atoms of the molecules of labelled carbamoylaspartate and uracil was investigated, we found that more than 90% of the total 14C in these compounds derived directly from carbamoyl phosphate and the remaining portion was from aspartate, either in the presence or absence of 6-azauridine. 4. There was no indication that 6-azauridine altered [14C]bicarbonate permeation through the cell membrane or its intracellular metabolism. 5. These results, along with the pattern of early intermediate accumulation seen in the presence of 6-azauridine, indicate that 6-azauridine stimulates the production of carbamoyl phosphate for the pyrimidine biosynthetic pathway in the mouse spleen. 6. Of the radioactive early intermediates which accumulated, only orotate, its derivatives (orotidine and orotidine 5'-monophosphate) or both appeared in the medium, presumably the result of leakage through the cell membranes. 7. Stimulation of the pyrimidine pathway was not observed in the case of Ehrlich ascites tumour cells incubated under similar conditions with 6-azauridine.  相似文献   

14.
15.
16.
The effect of vasopressin on the biosynthesis of phosphatidylcholines and phosphatidylethanolamines was investigated in freshly isolated rat hepatocytes in suspension. Treatment of hepatocytes with vasopressin inhibits the incorporation of [Me-14C]choline into phosphatidylcholines in a dose-dependent manner. The hormone does not affect the uptake, phosphorylation or oxidation of choline. Pulse-chase studies indicate that CTP:cholinephosphate cytidylyltransferase might be subject to hormonal regulation by vasopressin. In contrast with the inhibitory effect of vasopressin on the synthesis of phosphatidylcholines, this hormone stimulates the incorporation of [1,2-14C]ethanolamine into phosphatidylethanolamines in a dose-dependent manner. Pulse and pulse-chase studies with labelled ethanolamine show that the conversion of ethanolaminephosphate to CDPethanolamine as well as the formation of phosphatidylethanolamines from CDPethanolamine and diacylglycerol are enhanced. Determination of the effect of vasopressin on the activity of the enzymes of the synthesis de novo of phosphatidylethanolamines demonstrates an increase of the activity of ethanolaminephosphotransferase, probably as a result of the increased amount of diacylglycerol in vasopressin-treated cells.  相似文献   

17.
In order to examine the biosynthesis, interconversion, and degradation of purine and pyrimidine nucleotides in white spruce cells, radiolabeled adenine, adenosine, inosine, uracil, uridine, and orotic acid were supplied exogenously to the cells and the overall metabolism of these compounds was monitored. [8‐14C]adenine and [8‐14C]adenosine were metabolized to adenylates and part of the adenylates were converted to guanylates and incorporated into both adenine and guanine bases of nucleic acids. A small amount of [8‐14C]inosine was converted into nucleotides and incorporated into both adenine and guanine bases of nucleic acids. High adenosine kinase and adenine phosphoribosyltransferase activities in the extract suggested that adenosine and adenine were converted to AMP by these enzymes. No adenosine nucleosidase activity was detected. Inosine was apparently converted to AMP by inosine kinase and/or a non‐specific nucleoside phosphotransferase. The radioactivity of [8‐14C]adenosine, [8‐14C]adenine, and [8‐14C]inosine was also detected in ureide, especially allantoic acid, and CO2. Among these 3 precursors, the radioactivity from [8‐14C]inosine was predominantly incorporated into CO2. These results suggest the operation of a conventional degradation pathway. Both [2‐14C]uracil and [2‐14C]uridine were converted to uridine nucleotides and incorporated into uracil and cytosine bases of nucleic acids. The salvage enzymes, uridine kinase and uracil phosphoribosyltransferase, were detected in white spruce extracts. [6‐14C]orotic acid, an intermediate of the de novo pyrimidine biosynthesis, was efficiently converted into uridine nucleotides and also incorporated into uracil and cytosine bases of nucleic acids. High activity of orotate phosphoribosyltransferase was observed in the extracts. A large proportion of radioactivity from [2‐14C]uracil was recovered as CO2 and β‐ureidopropionate. Thus, a reductive pathway of uracil degradation is functional in these cells. Therefore, white spruce cells in culture demonstrate both the de novo and salvage pathways of purine and pyrimidine metabolism, as well as some degradation of the substrates into CO2.  相似文献   

18.
The metabolism of some purine compounds to urate and their effects on de novo urate synthesis in chicken hepatocytes were investigated. The purines, listed in descending order of rates of catabolism to urate, were hypoxanthine, xanthine, inosine, guanosine, guanine, IMP, GMP, adenosine, AMP, and adenine. During a 1-h incubation period, conversion to urate accounted for more than 80% of the total quantities of guanine, guanosine, and inosine metabolized, but only 42% of the adenosine and 23% of the adenine metabolism. Adenine, adenosine, and AMP inhibited de novo urate synthesis [( 14C]formate incorporation into urate), whereas the other purines, especially guanine, guanosine, and GMP, stimulated de novo urate synthesis. When hepatocytes were incubated with glutamine and adenosine, AMP, guanine, guanosine, or GMP, the rates of de novo urate synthesis were lower than the additive effects of glutamine and the purine in separate incubations. Increasing phosphate concentrations had no effect on urate synthesis in the absence of added purines but, in combination with adenosine, AMP, guanosine, or GMP, increased urate synthesis. These results indicate that the ratio of adenine to guanine nucleotides and the interaction between substrates and purine nucleotides are involved in the regulation of urate biosynthesis in chicken liver.  相似文献   

19.
To investigate the short‐term (3 h) effect of salt on the metabolism of purine, pyrimidine and pyridine nucleotides in mangrove (Bruguiera sexangula) cells, we examined the uptake and overall metabolism of radiolabelled intermediates involved in the de novo pathways and substrates of salvage pathways for nucleotide biosynthesis in the presence and absence of 100 mM NaCl. Uptake by the cells of substrates for the salvage pathways was much faster than uptake of intermediates of the de novo pathways. The activity of the de novo pyrimidine biosynthesis estimated by [2‐14C]orotate metabolism was not significantly affected by the salt. About 20–30% of [2‐14C]uridine, [2‐14C]uracil and more than 50% of [2‐14C]cytidine were salvaged for pyrimidine nucleotide biosynthesis. However, substantial quantities of these compounds were degraded to 14CO2 via β‐ureidopropionate (β‐UP), and degradation of β‐UP was increased by the salt. The activities of the de novo pathway, estimated by [2‐14C] 5‐aminoimidazole‐4‐carboxamide ribonucleoside, and the salvage pathways from [8‐14C]adenosine and [8‐14C]guanosine for the purine nucleotide biosynthesis were not influenced by the salt. Most [8‐14C]hypoxanthine was catabolised to 14CO2, and other purine compounds are also catabolised via xanthine. Purine catabolism was stimulated by the salt. [3H]Quinolinate, [carbonyl‐14C]nicotinamide and [carboxyl‐14C]nicotinic acid were utilised for the biosynthesis of pyridine nucleotides. The salvage pathways for pyridine nucleotides were significantly stimulated by the salt. Trigonelline was synthesised from all pyridine precursors that were examined; its synthesis was also stimulated by the salt. We discuss the physiological role of the salt‐stimulated reactions of nucleotide metabolism.  相似文献   

20.
Biosynthesis and scavenging of pyrimidines by pathogenic mycobacteria   总被引:1,自引:0,他引:1  
Mycobacterium microti incorporated a wide range of exogenously supplied pyrimidines into its nucleic acids. M. avium incorporated a relatively narrow range of pyrimidines but both M. avium and M. microti when recovered after growth in vivo incorporated a slightly wider range of pyrimidines than the same strains grown in vitro. M. microti and M. leprae could not take up uridine nucleotides directly but could utilize the pyrimidines by hydrolysing them to uridine and then taking up the uridine. Pyrimidine biosynthesis, judged by the ability to incorporate carbon from CO2 or aspartate into pyrimidines was readily detected in non-growing suspensions of M. microti and M. avium harvested from Dubos medium, which does not contain pyrimidines. The biosynthetic activity was diminished in mycobacteria grown in vivo when there is likely to be a source of pyrimidines which they might use. Relative activities for pyrimidine biosynthesis de novo in M. microti were 100 for cells isolated from Dubos medium, 6 for cells isolated from Dubos medium containing the pyrimidine cytidine and 11 from cells recovered after growth in mice. In contrast, relative activities for a scavenging reaction, uracil incorporation, were 100, 71 and 59, respectively. Three key enzymes in the pathway of pyrimidine biosynthesis de novo were detected in M. microti and M. avium. Two, dihydroorotate synthase and orotate phosphoribosyltransferase appeared to be constitutive in M. microti and M. avium. Aspartate transcarbamoylase activity was higher in these mycobacteria grown in vivo than in Dubos medium but it was repressed in M. microti or M. avium grown in Dubos medium in the presence of 50 microM-pyrimidine. Aspartate transcarbamoylase was strongly inhibited by the feedback inhibitors ATP, CTP and UTP. Enzymes for scavenging pyrimidines were detected at low specific activities in all mycobacteria studied. Activities of phosphoribosyltransferases, enzymes that convert bases directly to nucleotides, were not related to the ability of intact mycobacteria to take up pyrimidine bases while activities of pyrimidine nucleoside kinases were generally related to the ability of intact mycobacteria to take up nucleosides. Phosphoribosyltransferase activity for uracil, cytosine, orotic acid and--in organisms grown in Dubos medium with 50 microM-uridine-thymine, as well as kinases for uridine, deoxyuridine, cytidine and thymidine were detected in M. microti. However, M. avium only contained uracil and orotate phosphoribosyltransferase, uridine, cytidine and thymidine kinase, and additionally deoxyuridine kinase when grown axenically with 50 microM-uracil, reflecting its more limited abilities in pyrimidine scavenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号