首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model of magnetoreception proposes that the avian magnetic compass is based on a radical pair mechanism, with photon absorption leading to the formation of radical pairs. Analyzing the predicted light dependency by testing migratory birds under monochromatic lights, we found that the responses of birds change with increasing intensity. The analysis of the orientation of European robins under 502 nm turquoise light revealed two types of responses depending on light intensity: under a quantal flux of 8.10(15) quanta m(-2) s(-1), the birds showed normal migratory orientation in spring as well as in autumn, relying on their inclination compass. Under brighter light of 54.10(15) quanta m(-2) s(-1), however, they showed a "fixed" tendency toward north that did not undergo the seasonal change and proved to be based on magnetic polarity, not involving the inclination compass. When birds were exposed to a weak oscillating field, which specifically interferes with radical pair processes, the inclination compass response was disrupted, whereas the response to magnetic polarity remained unaffected. These findings indicate that the normal inclination compass used for migratory orientation is based on a radical-pair mechanism, whereas the fixed direction represents a novel type of light-dependent orientation based on a mechanism of a different nature.  相似文献   

2.
Orientation of birds in total darkness   总被引:1,自引:0,他引:1  
Magnetic compass orientation of migratory birds is known to be light dependent, and radical-pair processes have been identified as the underlying mechanism. Here we report for the first time results of tests with European robins, Erithacus rubecula, in total darkness and, as a control, under 565 nm green light. Under green light, the robins oriented in their normal migratory direction, with southerly headings in autumn and northerly headings in spring. By contrast, in darkness they significantly preferred westerly directions in spring as well as autumn. This failure to show the normal seasonal change characterizes the orientation in total darkness as a "fixed direction" response. Tests in magnetic fields with the vertical or the horizontal component inverted showed that the preferred direction depended on the magnetic field but did not involve the avian inclination compass. A high-frequency field of 1.315 MHz did not affect the behavior, whereas local anesthesia of the upper beak resulted in disorientation. The behavior in darkness is thus fundamentally different from normal compass orientation and relies on another source of magnetic information: It does not involve the radical-pair mechanism but rather originates in the iron-containing receptors in the upper beak.  相似文献   

3.
In view of the finding that cryptochrome 1a, the putative receptor molecule for the avian magnetic compass, is restricted to the ultraviolet single cones in European Robins, we studied the orientation behaviour of robins and Australian Silvereyes under monochromatic ultraviolet (UV) light. At low intensity UV light of 0.3 mW/m2, birds showed normal migratory orientation by their inclination compass, with the directional information originating in radical pair processes in the eye. At 2.8 mW/m2, robins showed an axial preference in the east–west axis, whereas silvereyes preferred an easterly direction. At 5.7 mW/m2, robins changed direction to a north–south axis. When UV light was combined with yellow light, robins showed easterly ‘fixed direction’ responses, which changed to disorientation when their upper beak was locally anaesthetised with xylocaine, indicating that they were controlled by the magnetite-based receptors in the beak. Orientation under UV light thus appears to be similar to that observed under blue, turquoise and green light, albeit the UV responses occur at lower light levels, probably because of the greater light sensitivity of the UV cones. The orientation under UV light and green light suggests that at least at the level of the retina, magnetoreception and vision are largely independent of each other.  相似文献   

4.
Previous experiments have shown that a short, strong magnetic pulse caused migratory birds to change their headings from their normal migratory direction to an easterly direction in both spring and autumn. In order to analyse the nature of this pulse effect, we subjected migratory Australian silvereyes, Zosterops lateralis, to a magnetic pulse and tested their subsequent response under different magnetic conditions. In the local geomagnetic field, the birds preferred easterly headings as before, and when the horizontal component of the magnetic field was shifted 90 degrees anticlockwise, they altered their headings accordingly northwards. In a field with the vertical component inverted, the birds reversed their headings to westwards, indicating that their directional orientation was controlled by the normal inclination compass. These findings show that although the pulse strongly affects the magnetite particles, it leaves the functional mechanism of the magnetic compass intact. Thus, magnetite-based receptors seem to mediate magnetic 'map'-information used to determine position, and when affected by a pulse, they provide birds with false positional information that causes them to change their course.  相似文献   

5.
To analyze the wavelength dependency of magnetic compass orientation, European robins were tested during spring migration under light of various wavelengths. Under 565-nm green light (control) the birds showed excellent orientation in their migratory direction; a 120° deflection of magnetic North resulted in a corresponding shift in the birds' directional tendencies, indicating the use of the magnetic compass. Under 443-nm blue light, the robins were likewise well oriented. Under 590-nm yellow, however, oriented behavior was no longer observed, although the activity was at the same level as under blue and green light. The spectral range where magnetic orientation is possible thus differs from the range of vision, the former showing parallels to that of rhodopsin absorption. The interpretation of the abrupt change in behavior observed between 565 green to 590 yellow is unclear. There is no simple relationship between magnetoreception and the known color receptors of birds. Accepted: 17 December 1998  相似文献   

6.
Synergisms between a physiologically patterned magnetic field that is known to enhance planarian growth and suppress proliferation of malignant cells in culture and three light emitting diode (LED) generated visible wavelengths (blue, green, red) upon planarian regeneration and melanoma cell numbers were discerned. Five days of hourly exposures to either a physiologically patterned (2.5–5.0 μT) magnetic field, one of three wavelengths (3 kLux) or both treatments simultaneously indicated that red light (680 nm), blue light (470 nm) or the magnetic field significantly facilitated regeneration of planarian compared to sham field exposed planarian. Presentation of both light and magnetic field conditions enhanced the effect. Whereas the blue and red light diminished the growth of malignant (melanoma) cells, the effect was not as large as that produced by the magnetic field. Only the paired presentation of the blue light and magnetic field enhanced the suppression. On the other hand, the changes following green light (540 nm) exposure did not differ from the control condition and green light presented with the magnetic field eliminated its effects for both the planarian and melanoma cells. These results indicate specific colors affect positive adaptation that is similar to weak, physiologically patterned frequency modulated (8–24 Hz) magnetic fields and that the two forms of energy can synergistically summate or cancel.  相似文献   

7.
The avian magnetic compass works as an inclination compass. Instead of using the polarity of the magnetic field to determine direction, birds use the inclination of the dip angle. Consequently, transequatorial migrants have to reverse their response to the magnetic compass after crossing the magnetic equator. When confronted with an artificial magnetic field that reverses the vertical component of the magnetic field, migrants such as the bobolink reverse their headings relative to magnetic north even in the presence of visual cues such as stellar patterns. Bobolinks, which breed in temperate North America and winter in temperate South America, were tested in a planetarium under fixed star patterns in a series of magnetic fields incremented each night from the natural field in the northern hemisphere through an artificial horizontal field to an artificial southern hemisphere magnetic field. The birds maintained a constant heading throughout the experiment and did not reverse direction after the simulated crossing of the magnetic equator as previous experiments predicted. In nature, this response would have meant continuation of their migration flight across the equator and into the opposite hemisphere. The switch from “equatorward” orientation to “poleward” orientation is probably triggered by experience with a horizontal magnetic field and/or visual cues. The ability to maintain an accurate heading while crossing the magnetic equator may be based on the use of visual cues such as the stars.  相似文献   

8.
During autumn migration, orientation tests were performed with Goldcrests in the morning immediately after the birds had been caught. In the local geomagnetic field (vertical component pointing downward), they showed a significant tendency towards 144° SE; in a magnetic field with the vertical component pointing upward, their mean was at 321° NW. This response to an inversion of the vertical component reveals that the Goldcrests used the magnetic field for orientation and that their magnetic compass is an inclination compass as it has been described for several other species of migrants.  相似文献   

9.
Previous studies on European robins, Erithacus rubecula, and Australian silvereyes, Zosterops lateralis, had suggested that magnetic compass information is being processed only in the right eye and left brain hemisphere of migratory birds. However, recently it was demonstrated that both garden warblers, Sylvia borin, and European robins have a magnetic compass in both eyes. These results raise the question if the strong lateralization effect observed in earlier experiments might have arisen from artifacts or from differences in experimental conditions rather than reflecting a true all-or-none lateralization of the magnetic compass in European robins. Here we show that (1) European robins having only their left eye open can orient in their seasonally appropriate direction both during autumn and spring, i.e. there are no strong lateralization differences between the outward journey and the way home, that (2) their directional choices are based on the standard inclination compass as they are turned 180° when the inclination is reversed, and that (3) the capability to use the magnetic compass does not depend on monocular learning or intraocular transfer as it is already present in the first tests of the birds with only one eye open.  相似文献   

10.
Candidatus Magnetoglobus multicellularis’ is a magnetotactic microorganism composed of several bacterial cells. Presently, it is the best known multicellular magnetotactic prokaryote (MMP). Recently, it has been observed that MMPs present a negative photoresponse to high intensity ultraviolet and violet-blue light. In this work, we studied the movement of ‘Candidatus Magnetoglobus multicellularis’ under low intensity light of different wavelengths, measuring the average velocity and the time to reorient its trajectory when the external magnetic field changes its direction (U-turn time). Our results show that the mean average velocity is higher for red light (628 nm) and lower for green light (517 nm) as compared to yellow (596 nm) and blue (469 nm) light, and the U-turn time decreased for green light illumination. The light wavelength velocity dependence can be understood as variation in flagella rotation speed, being increased by the red light and decreased by the green light relative to yellow and blue light. It is suggested that the dependence of the U-turn time on light wavelength can be considered a form of light-dependent magnetotaxis, because this time represents the magnetic sensibility of the magnetotactic microorganisms. The cellular and molecular mechanisms for this light-dependent velocity and magnetotaxis are unknown and deserve further studies to understand the biochemical interactions and the ecological roles of the different mechanisms of taxis in MMPs.  相似文献   

11.
We provide evidence for the use of a magnetic compass for y-axis orientation (i.e., orientation along the shore-deep water axis) by tadpoles of the European common frog (Rana temporaria). Furthermore, our study provides evidence for a wavelength-dependent effect of light on magnetic compass orientation in amphibians. Tadpoles trained and then tested under full-spectrum light displayed magnetic compass orientation that coincided with the trained shore-deep water axes of their training tanks. Conversely, tadpoles trained under long-wavelength (≥500 nm) light and tested under full-spectrum light, and tadpoles trained under full-spectrum light and tested under long-wavelength (≥500 nm) light, exhibited a 90° shift in magnetic compass orientation relative to the trained y-axis direction. Our results are consistent with earlier studies showing that the observed 90° shift in the direction of magnetic compass orientation under long-wavelength (≥500 nm) light is due to a direct effect of light on the underlying magnetoreception mechanism. These findings also show that wavelength-dependent effects of light do not compromise the function of the magnetic compass under a wide range of natural lighting conditions, presumably due to a large asymmetry in the relatively sensitivity of antagonistic short- and long-wavelength inputs to the light-dependent magnetic compass.  相似文献   

12.
We report evidence for magnetic compass orientation by larval Drosophila melanogaster. Groups of larvae were exposed from the time of hatching to directional ultraviolet (365 nm) light emanating from one of four magnetic directions. Larvae were then tested individually on a circular agar plate under diffuse light in one of four magnetic field alignments. The larvae exhibited magnetic compass orientation in a direction opposite that of the light source in training. Evidence for a well-developed magnetic compass in a larval insect that moves over distances of at most a few tens of centimeters has important implications for understanding the adaptive significance of orientation mechanisms like the magnetic compass. Moreover, the development of an assay for studying magnetic compass orientation in larval D. melanogaster will make it possible to use a wide range of molecular genetic techniques to investigate the neurophysiological, biophysical, and molecular mechanisms underlying the magnetic compass.  相似文献   

13.

Background

The Radical Pair model proposes that magnetoreception is a light-dependent process. Under low monochromatic light from the short-wavelength part of the visual spectrum, migratory birds show orientation in their migratory direction. Under monochromatic light of higher intensity, however, they showed unusual preferences for other directions or axial preferences. To determine whether or not these responses are still controlled by the respective light regimes, European robins, Erithacus rubecula, were tested under UV, Blue, Turquoise and Green light at increasing intensities, with orientation in migratory direction serving as a criterion whether or not magnetoreception works in the normal way.

Results

The birds were well oriented in their seasonally appropriate migratory direction under 424 nm Blue, 502 nm Turquoise and 565 nm Green light of low intensity with a quantal flux of 8·1015 quanta s-1 m-2, indicating unimpaired magnetoreception. Under 373 nm UV of the same quantal flux, they were not oriented in migratory direction, showing a preference for the east-west axis instead, but they were well oriented in migratory direction under UV of lower intensity. Intensities of above 36·1015 quanta s-1 m-2 of Blue, Turquoise and Green light elicited a variety of responses: disorientation, headings along the east-west axis, headings along the north-south axis or 'fixed' direction tendencies. These responses changed as the intensity was increased from 36·1015 quanta s-1 m-2 to 54 and 72·1015 quanta s-1 m-2.

Conclusion

The specific manifestation of responses in directions other than the migratory direction clearly depends on the ambient light regime. This implies that even when the mechanisms normally providing magnetic compass information seem disrupted, processes that are activated by light still control the behavior. It suggests complex interactions between different types of receptors, magnetic and visual. The nature of the receptors involved and details of their connections are not yet known; however, a role of the color cones in the processes mediating magnetic input is suggested.  相似文献   

14.
1.  Wildtype Oregon-R Drosophila melanogaster were trained in the ambient magnetic field to a horizontal gradient of 365 nm light emanating from one of the 4 cardinal compass directions and were subsequently tested in a visually-symmetrical, radial 8-arm maze in which the magnetic field alignment could be varied. When tested under 365 nm light, flies exhibited consistent magnetic compass orientation in the direction from which light had emanated in training.
2.  When the data were analyzed by sex, males exhibited a strong and consistent magnetic compass response while females were randomly oriented with respect to the magnetic field.
3.  When tested under 500 nm light of the same quantal flux, females were again randomly oriented with respect to the magnetic field, while males exhibited a 90° clockwise shift in magnetic compass orientation relative to the trained direction.
4.  This wavelength-dependent shift in the direction of magnetic compass orientation suggests that Drosophila may utilize a light-dependent magnetic compass similar to that demonstrated previously in an amphibian. However, the data do not exclude the alternative hypothesis that a change in the wavelength of light has a non-specific effect on the flies' behavior, i.e., causing the flies to exhibit a different form of magnetic orientation behavior.
  相似文献   

15.
Previous studies have demonstrated the presence of a light‐dependent magnetic compass in a urodele amphibian, the eastern red‐spotted newt Notophthalmus viridescens, mediated by extraocular photoreceptors located in or near the pineal organ. Newts tested under long‐wavelength (≥500 nm) light exhibited a 90° shift in the direction of orientation relative to newts tested under full spectrum (white) or short‐wavelength light. Here we report that bullfrog tadpoles Rana catesbeiana (an anuran amphibian) exhibit a 90° shift in the direction of magnetic compass orientation under long‐wavelength (≥500 nm) light similar to that observed in newts, suggesting that a common light‐dependent mechanism mediates these responses. These findings suggest that a light‐dependent magnetic compass may have been the ancestral state in this group of vertebrates.  相似文献   

16.
The morphology (mainly prosthecae length), ultrastructure, and antenna pigment composition of the green sulfur bacterium Prosthecochloris aestuarii changed when grown under different light intensities. At light intensities of 0.5 and 5 micromol quanta m(-2) s(-1), the cells had a star-like morphology. Prosthecae, the characteristic appendages of the genus Prosthecochloris, were 232 nm and 194 nm long, respectively. In contrast, when grown at 100 micromol quanta m(-2) s(-1), these appendages were shorter (98 nm) and the cells appeared more rod-shaped. Transmission electron microscopy revealed a significant decrease in the cell perimeter to area ratio and in the number of chlorosomes per linear microm of membrane as light intensity increased. In addition to these morphological and ultrastructural responses, Prosthecochloris aestuarii exhibited changes in its pigment composition as a function of light regime. Lower specific pigment content and synthesis rates were found in cultures grown at light intensities above 5 micromol quanta m(-2) s(-1). A blue shift in the bacteriochlorophyll (BChl) c Q(y) absorption maximum of up to 17.5 nm was observed under saturating light conditions (100 micromol quanta m(-2) s(-1)). This displacement was accompanied by changes in the composition of BChl c homologs and by a very low carotenoid content. The morphological, ultrastructural and functional changes exhibited by Prosthecochloris aestuarii revealed the strong light-response capacity of this bacterium to both high and low photon-flux densities.  相似文献   

17.
The Earth's magnetic field and celestial cues provide animals with compass information during migration. Inherited magnetic compass courses are selected based on the angle of inclination, making it difficult to orient in the near vertical fields found at high geomagnetic latitudes. Orientation cage experiments were performed at different sites in high Arctic Canada with adult and young white-crowned sparrows (Zonotrichia leucophrys gambelii) in order to investigate birds' ability to use the Earth's magnetic field and celestial cues for orientation in naturally very steep magnetic fields at and close to the magnetic North Pole. Experiments were performed during the natural period of migration at night in the local geomagnetic field under natural clear skies and under simulated total overcast conditions. The experimental birds failed to select a meaningful magnetic compass course under overcast conditions at the magnetic North Pole, but could do so in geomagnetic fields deviating less than 3 degrees from the vertical. Migratory orientation was successful at all sites when celestial cues were available.  相似文献   

18.
Despite the common use of bright light exposure for treatment of seasonal affective disorder (SAD), the underlying biology of the therapeutic effect is not clear. Moreover, there is a debate regarding the most efficacious wavelength of light for treatment. Whereas according to the traditional approach full-spectrum light is used, recent studies suggest that the critical wavelengths are within the range of blue light (460 and 484 nm). Our previous work shows that when diurnal rodents are maintained under short photoperiod they develop depression- and anxiety-like behavioral phenotype that is ameliorated by treatment with wide-spectrum bright light exposure (2500 lux at the cage, 5000 K). Our current study compares the effect of bright wide-spectrum (3,000 lux, wavelength 420- 780 nm, 5487 K), blue (1,300 lux, wavelength 420-530 nm) and red light (1,300 lux, wavelength range 600-780 nm) exposure in the fat sand rat (Psammomys Obesus) model of SAD. We report results of experiments with six groups of sand rats that were kept under various photoperiods and light treatments, and subjected to behavioral tests related to emotions: forced swim test, elevated plus maze and social interactions. Exposure to either intense wide-spectrum white light or to blue light equally ameliorated depression-like behavior whereas red light had no effect. Bright wide-spectrum white light treatment had no effect on animals maintained under neutral photoperiod, meaning that light exposure was only effective in the pathological-like state. The resemblance between the effects of bright white light and blue light suggests that intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in the underlying biology of SAD and light therapy.  相似文献   

19.
The object of this study was to test the alternative hypotheses of magnetoreception by photopigments and magnetoreception based on magnetite. Migratory European Robins, Erithacus rubecula, were tested under light of different wavelengths; after these tests, they were subjected to a brief, strong magnetic pulse designed to alter the magnetization of single domain magnetite. In control tests under white light, the birds preferred the normal, seasonally appropriate migratory direction. Under 571 nm green light, they continued to be well oriented in the migratory direction, whereas under 633 nm red light, their behaviour was not different from random. The magnetic pulse had a significant effect on migratory orientation, but the response varied between individuals: some showed a persistent directional shift, while others exhibited a change in scatter; one bird was seemingly unaffected.These findings indicate a light-dependent process and, at the same time, suggest an involvement of magnetizable material in migratory orientation. They are in agreement with the model of a light-dependent compass and a magnetite-based map, even if some questions concerning the effect of the pulse remain open.  相似文献   

20.
【目的】明确不同波长的LED光源对韭菜迟眼蕈蚊Bradysia odoriphaga Yang et Zhang求偶、交配及繁殖等生殖行为的影响。【方法】采用红(625~630 nm)、橙(600~605 nm)、黄(590~595nm)、绿(525~530 nm)、蓝(455~460 nm)和白(6 000~6 500 k)6种LED光源在韭菜迟眼蕈蚊成虫交配期进行照光处理,观察统计其求偶和交配行为以及单雌产卵量、卵孵化情况和有效后代数量。【结果】韭菜迟眼蕈蚊成虫求偶前期时长在橙光下最长,为28.48 min。求偶率在蓝光下最高,为86%;橙光下最低,为48%。交配期时长在蓝光下最长,为4.59 min;橙光下较短,为4.23 min。单雌产卵量在各波长光源下与对照均无显著差异。卵孵化率在蓝光下最低,仅为43.41%。有效后代数量在蓝光下最低,仅为27.00头;橙光下次之,为43.40头。【结论】LED光源的波长可影响韭菜迟眼蕈蚊的生殖行为,其中橙光(600~605 nm)不利于其求偶、交配和繁殖;蓝光(455~460nm)虽有利于其求偶和交配,但明显抑制其繁殖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号