首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Fumonisin B1 (FB(1)) biosynthesis is repressed in cultures containing ammonium as the nitrogen source and when grown on blister kernels, the earliest stages of kernel development. In this study AREA, a regulator of nitrogen metabolism, was disrupted in Fusarium verticilliodes. The mutant (DeltaareA) grew poorly on mature maize kernels, but grew similar to wild type (WT) with the addition of ammonium phosphate. FB(1) was not produced by DeltaareA under any condition or by the WT with added ammonium phosphate. Constitutive expression of AREA (strain AREA-CE) rescued the growth and FB(1) defects in DeltaareA. Growth of WT, DeltaareA, and AREA-CE on blister-stage kernels was similar. After 7 days of growth, none of the strains produced FB(1) and the pH of the kernel tissues was 8.0. Addition of amylopectin to the blister kernels resulted in a pH near 6.6 and FB(1) production by WT and AREA-CE. The results support the hypothesis that FB(1) biosynthesis is regulated by AREA. Also the failure to produce FB(1) in blister kernels is due to high pH conditions generated because of an unfavorable carbon/nitrogen environment.  相似文献   

2.
AIMS: Enterobacter cloacae, Microbacterium oleovorans, Pseudomonas solanacearum and Bacillus subtilis were investigated in order to evaluate: (i) the inoculum size of two bacterial mixtures on Fusarium verticillioides growth and fumonisin B1 production in vitro at different water activities and (ii) the efficacy of a seed treatment with the best bacterial mixture on F. verticillioides root colonization in greenhouse studies. METHODS AND RESULTS: The influence of bacterial mixtures (1 = E. cloacae and M. oleovorans and 2 = P. solanacearum and B. subtilis) to antagonize 13 F. verticillioides strains at different inoculum concentrations (10(8), 10(9) and 10(10) cells ml(-1)) and water activities (0.937, 0.955 and 0.982 aW) were examined. Antibiosis, growth rate and fumonisin B1 production were determined. Bacterial mixture 1 proved to exert the most effective control. Seed treatment with mixture 1 at 10(8) cells ml(-1) had the best inhibitory effect on F. verticillioides root colonization. CONCLUSIONS: These results suggest that the combination E. cloacae and M. oleovorans has the potential for the biological control of F. verticillioides as a maize seed inoculant. SIGNIFICANCE AND IMPACT OF THE STUDY: The application of this knowledge contributes to prevent the vertical transmission of F. verticillioides.  相似文献   

3.
4.
Production of fumonisins by Fusarium moniliforme on naturally infected maize ears is an important food safety concern due to the toxic nature of this class of mycotoxins. Assessing the potential risk of fumonisin production in developing maize ears prior to harvest requires an understanding of the regulation of toxin biosynthesis during kernel maturation. We investigated the developmental-stage-dependent relationship between maize kernels and fumonisin B1 production by using kernels collected at the blister (R2), milk (R3), dough (R4), and dent (R5) stages following inoculation in culture at their respective field moisture contents with F. moniliforme. Highly significant differences (P 相似文献   

5.
6.
7.
The filamentous ascomycete Fusarium verticillioides is a pathogen of maize and produces the fumonisin mycotoxins. However, a distinct population of F. verticillioides is pathogenic on banana and does not produce fumonisins. Fumonisin-producing strains from maize cause leaf lesions, developmental abnormalities, stunting, and sometimes death of maize seedlings, whereas fumonisin-nonproducing banana strains do not. A Southern analysis of banana strains did not detect genes in the fumonisin biosynthetic gene (FUM) cluster but did detect genes flanking the cluster. Nucleotide sequence analysis of the genomic region carrying the flanking genes revealed that the FUM cluster was absent in banana strains except for portions of FUM21 and FUM19, which are the terminal genes at each end of the cluster. Polymerase chain reaction analysis confirmed the absence of the cluster in all banana strains examined. Cotransformation of a banana strain with two overlapping cosmids, which together contain the entire FUM cluster, yielded fumonisin-producing transformants that were pathogenic on maize seedlings. Conversely, maize strains that possess the FUM cluster but do not produce fumonisins because of mutations in FUM1, a polyketide synthase gene, were not pathogenic on maize seedlings. Together, the data indicate that fumonisin production may have been lost by deletion of the FUM cluster in the banana population of F. verticillioides but that fumonisin production could be restored by molecular genetic complementation. The results also indicate that fumonisin production by F. verticillioides is required for development of foliar disease symptoms on maize seedlings.  相似文献   

8.
Fusarium verticillioides produces a group of mycotoxins known as fumonisins that are associated with a variety of mycotoxicoses in humans and animals. In this study, DNA microarrays were constructed with expressed sequence tags (ESTs) from F. verticillioides. To identify genes with patterns of expression similar to the fumonisin biosynthetic (FUM) genes, the microarray was probed with labeled cDNAs originating from a wild-type strain and a fcc1 mutant grown on maize and in a defined medium adjusted to either pH 3 or pH 8. The comparative analyses revealed differential expression of genes corresponding to 116 ESTs when the fungal strains were grown on maize. Under different pH conditions, 166 ESTs were differentially expressed, and 19 ESTs were identified that displayed expression patterns similar to the FUM ESTs. These results provide candidate genes with potential roles in fumonisin biosynthesis.  相似文献   

9.
10.
11.
Fusarium verticillioides is one of the most important fungal pathogens to cause destructive diseases of maize worldwide. Fumonisins produced by the fungus are harmful to human and animal health. To date, our understanding of the molecular mechanisms associated with pathogenicity and fumonisin biosynthesis in F. verticillioides is limited. Because MAP kinase pathways have been implicated in regulating diverse processes important for plant infection in phytopathogenic fungi, in this study we identified and functionally characterized the FvMK1 gene in F. verticillioides. FvMK1 is orthologous to FMK1 in F. oxysporum and GPMK1 in F. graminearum. The Fvmk1 deletion mutant was reduced in vegetative growth and production of microconidia. However, it was normal in sexual reproduction and increased in the production of macroconidia. In infection assays with developing corn kernels, the Fvmk1 mutant was non-pathogenic and failed to colonize through wounding sites. It also failed to cause stalk rot symptoms beyond the inoculation sites on corn stalks, indicating that FvMK1 is essential for plant infection. Furthermore, the Fvmk1 mutant was significantly reduced in fumonisin production and expression levels of FUM1 and FUM8, two genes involved in fumonisin biosynthesis. The defects of the Fvmk1 mutant were fully complemented by re-introducing the wild type FvMK1 allele. These results demonstrate that FvMK1 plays critical roles in the regulation of vegetative growth, asexual reproduction, fumonisin biosynthesis, and pathogenicity.  相似文献   

12.
Survey of fumonisin production by Fusarium species   总被引:6,自引:0,他引:6  
Fumonisins B1 (FB1) and B2 (FB2), two structurally related mycotoxins with cancer-promoting activity, were recently isolated from corn cultures of Fusarium moniliforme MRC 826. These toxins have been reported to be produced also by isolates of F. proliferatum. Contamination of foods and feeds by F. moniliforme has been associated with human esophageal cancer risk, and FB1 has been shown to be the causative agent of the neurotoxic disease leukoencephalomalacia in horses. Because of the toxicological importance of the fumonisins, the potential to produce FB1 and FB2 was determined in a study of 40 toxic Fusarium isolates representing 27 taxa in 9 of the 12 sections of Fusarium, as well as two recently described species not yet classified into sections. With the exception of one isolate of F. nygamai, fumonisin production was restricted to isolates of F. moniliforme and F. proliferatum, in the section Liseola. The F. nygamai isolate produced 605 micrograms of FB1 g-1 and 530 micrograms of FB2 g-1, and the identity of the toxins was confirmed by capillary gas chromatography-mass spectrometry. This is the first report of the production of the fumonisins by F. nygamai.  相似文献   

13.
The kinetics of the production of fumonisin B1 (FB1) by Fusarium moniliforme MRC 826 in corn cultures was investigated as a function of fungal growth at various incubation temperatures. The growth rate of F. moniliforme, as measured by ergosterol concentration, was higher at 25 degrees C than at 20 degrees C, reaching a stationary phase after 4 to 6 weeks in both cases. FB1 production commenced after 2 weeks during the active growth phase, continued to increase during the stationary phase, and decreased after 13 weeks. The overall maximal yield of FB1 (17.9 g/kg, dry weight) was obtained in corn cultures incubated at 20 degrees C for 13 weeks, but it was not significantly (P greater than 0.05) higher than the maximum yield (16.5 g/kg, dry weight) obtained at 25 degrees C after 11 weeks. However, a significantly (P less than 0.05) higher mean yield was detected at 25 degrees C (9.5 g/kg, dry weight) than at 20 degrees C (8.7 g/kg, dry weight). Production reached a plateau after 7 weeks of incubation at 25 degrees C or 9 weeks of incubation at 20 degrees C. The maximal production of FB1 at 30 degrees C was very low (0.6 g/kg, dry weight). FB1 was also found to be heat stable, as there was no reduction in the FB1 concentration after boiling culture material of F. moniliforme MRC 826.  相似文献   

14.
Fumonisins are a group of mycotoxins produced in corn kernels by the plant-pathogenic fungus Fusarium verticillioides. A mutant of the fungus, FT536, carrying a disrupted gene named FCC1 (for Fusarium cyclin C1) resulting in altered fumonisin B(1) biosynthesis was generated. FCC1 contains an open reading frame of 1,018 bp, with one intron, and encodes a putative 319-amino-acid polypeptide. This protein is similar to UME3 (also called SRB11 or SSN8), a cyclin C of Saccharomyces cerevisiae, and contains three conserved motifs: a cyclin box, a PEST-rich region, and a destruction box. Also similar to the case for C-type cyclins, FCC1 was constitutively expressed during growth. When strain FT536 was grown on corn kernels or on defined minimal medium at pH 6, conidiation was reduced and FUM5, the polyketide synthase gene involved in fumonisin B(1) biosynthesis, was not expressed. However, when the mutant was grown on a defined minimal medium at pH 3, conidiation was restored, and the blocks in expression of FUM5 and fumonisin B(1) production were suppressed. Our data suggest that FCC1 plays an important role in signal transduction regulating secondary metabolism (fumonisin biosynthesis) and fungal development (conidiation) in F. verticillioides.  相似文献   

15.
The kinetics of the production of fumonisin B1 (FB1) by Fusarium moniliforme MRC 826 in corn cultures was investigated as a function of fungal growth at various incubation temperatures. The growth rate of F. moniliforme, as measured by ergosterol concentration, was higher at 25 degrees C than at 20 degrees C, reaching a stationary phase after 4 to 6 weeks in both cases. FB1 production commenced after 2 weeks during the active growth phase, continued to increase during the stationary phase, and decreased after 13 weeks. The overall maximal yield of FB1 (17.9 g/kg, dry weight) was obtained in corn cultures incubated at 20 degrees C for 13 weeks, but it was not significantly (P greater than 0.05) higher than the maximum yield (16.5 g/kg, dry weight) obtained at 25 degrees C after 11 weeks. However, a significantly (P less than 0.05) higher mean yield was detected at 25 degrees C (9.5 g/kg, dry weight) than at 20 degrees C (8.7 g/kg, dry weight). Production reached a plateau after 7 weeks of incubation at 25 degrees C or 9 weeks of incubation at 20 degrees C. The maximal production of FB1 at 30 degrees C was very low (0.6 g/kg, dry weight). FB1 was also found to be heat stable, as there was no reduction in the FB1 concentration after boiling culture material of F. moniliforme MRC 826.  相似文献   

16.
17.
Toxicokinetics and the toxicological effects of culture material containing fumonisin B1 (FB1) were studied in male weaned piglets by clinical, pathological, biochemical and sphingolipid analyses. The animals received a single oral dose of 5 mg FB1/kg of body weight, obtained from Fusarium verticillioides culture material. FB1 was detected by HPLC in plasma collected at 1-h intervals up to 6 h and at 12-h intervals up to 96 h. FB1 eliminated in feces and urine was quantified over a 96-h period and in liver samples collected 96 h post-intoxication. Blood samples were obtained at the beginning and end of the experiment to determine serum enzyme activity, total bilirubin, cholesterol, sphinganine (Sa), sphingosine (So) and the Sa/So ratio. FB1 was detected in plasma between 30 min and 36 h after administration. The highest concentration of FB1 was observed after 2 h, with a mean concentration of 282 μg/ml. Only 0.93% of the total FB1 was detected in urine between 75 min and 41 h after administration, the highest mean concentration (561 μg/ml) was observed during the interval after 8 at 24 h. Approximately 76.5% of FB1 was detected in feces eliminated between 8 and 84 h after administration, with the highest levels observed between 8 and 24 h. Considering the biochemical parameters, a significant increase only occurred in cholesterol, alkaline phosphatase and aspartate aminotransferase activities. In plasma and urine, the highest Sa and Sa/So ratios were obtained at 12 and 48 h, respectively.  相似文献   

18.
19.
Fumonisin B1, a recently discovered mycotoxin, was synthesized by submerged cultures of Fusarium moniliforme NRRL 13616 grown for 29 days at 28 degrees C and 220 rpm in a basal salts medium (pH 5.0) supplemented with 90 g of glucose per liter and 3.5 g of ammonium sulfate per liter. Under these culture conditions, 74 +/- 23 micrograms of fumonisin B1 per ml was produced by 29-day-old F. moniliforme NRRL 13616 cultures. Fumonisin B1 was detected in liquid culture extracts by high-performance thin-layer chromatography. Fumonisin B1 was confirmed and quantitated by gas chromatography and gas chromatography-mass spectral analysis of the trimethylsilyl derivative. The use of a defined medium for producing fumonisin B1 in a submerged culture facilitates its isolation and provides an excellent method for conducting biosynthetic studies.  相似文献   

20.
Fumonisin B(1) (FB(1)) is a mycotoxin that commonly occurs in maize. FB(1) causes a variety of toxic effects in different animal species and has been implicated as a contributing factor of esophageal cancers in humans. In the present study, we examined the effect of dietary exposure to FB(1) on intestinal colonization by pathogenic Escherichia coli associated with extraintestinal infection. Three-week-old weaned pigs were given FB(1) by gavage as a crude extract or as a purified toxin at a dose of 0.5 mg/kg of body weight daily for 6 days. On the last day of the toxin treatment, the pigs were orally inoculated with an extraintestinal pathogenic E. coli strain. All animals were euthanized 24 h later, necropsies were performed, and tissues were taken for bacterial counts and light microscopic examination. Ingestion of FB(1) had only a minimal effect on animal weight gain, did not cause any macroscopic or microscopic lesions, and did not change the plasma biochemical profile. However, colonization of the small and large intestines by an extraintestinal pathogenic E. coli strain was significantly increased. Our results show that FB(1) is a predisposing factor to infectious disease and that the pig can be used as a model for the study of the consequences of ingesting mycotoxin-contaminated food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号