首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis and Mycobacterium leprae are the ethiological agents of tuberculosis and leprosy, respectively. After performing extensive comparisons between genes from these two GC-rich bacterial species, we were able to construct a set of 275 homologous genes. Since these two bacterial species also have a very low growth rate, translational selection could not be so determinant in their codon preferences as it is in other fast-growing bacteria. Indeed, principal-components analysis of codon usage from this set of homologous genes revealed that the codon choices in M. tuberculosis and M. leprae are correlated not only with compositional constraints and translational selection, but also with the degree of amino acid conservation and the hydrophobicity of the encoded proteins. Finally, significant correlations were found between GC3 and synonymous distances as well as between synonymous and nonsynonymous distances. Received: 30 October 1998 / Accepted: 16 August 1999  相似文献   

2.
Ferritin, a protein widespread in nature, concentrates iron ∼1011–1012-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n= 7) is higher than in animals (n= 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may exist to maintain a particular intron/exon pattern within ferritin genes. In the case of plants, where ferritin gene intron placement is unrelated to triplet codons or protein structure, and where ferritin is targeted to the plastid, the selection pressure on gene organization may relate to RNA function and plastid/nuclear signaling. Received: 25 July 1995 / Accepted: 3 October 1995  相似文献   

3.
4.
Five complete bacterial genome sequences have been released to the scientific community. These include four (eu)Bacteria, Haemophilus influenzae, Mycoplasma genitalium, M. pneumoniae, and Synechocystis PCC 6803, as well as one Archaeon, Methanococcus jannaschii. Features of organization shared by these genomes are likely to have arisen very early in the history of the bacteria and thus can be expected to provide further insight into the nature of early ancestors. Results of a genome comparison of these five organisms confirm earlier observations that gene order is remarkably unpreserved. There are, nevertheless, at least 16 clusters of two or more genes whose order remains the same among the four (eu)Bacteria and these are presumed to reflect conserved elements of coordinated gene expression that require gene proximity. Eight of these gene orders are essentially conserved in the Archaea as well. Many of these clusters are known to be regulated by RNA-level mechanisms in Escherichia coli, which supports the earlier suggestion that this type of regulation of gene expression may have arisen very early. We conclude that although the last common ancestor may have had a DNA genome, it likely was preceded by progenotes with an RNA genome. Received: 10 March 1996 / Accepted: 20 May 1997  相似文献   

5.
6.
A 37-kb photosynthesis gene cluster was sequenced in a photosynthetic bacterium belonging to the beta subclass of purple bacteria (Proteobacteria), Rubrivivax gelatinosus. The cluster contained 12 bacteriochlorophyll biosynthesis genes (bch), 7 carotenoid biosynthesis genes (crt), structural genes for photosynthetic apparatuses (puf and puh), and some other related genes. The gene arrangement was markedly different from those of other purple photosynthetic bacteria, while two superoperonal structures, crtEF-bchCXYZ-puf and bchFNBHLM-lhaA-puhA, were conserved. Molecular phylogenetic analyses of these photosynthesis genes showed that the photosynthesis gene cluster of Rvi. gelatinosus was originated from those of the species belonging to the alpha subclass of purple bacteria. It was concluded that a horizontal transfer of the photosynthesis gene cluster from an ancestral species belonging to the alpha subclass to that of the beta subclass of purple bacteria had occurred and was followed by rearrangements of the operons in this cluster.  相似文献   

7.
8.
9.
Multiple copies of a given ribosomal RNA gene family undergo concerted evolution such that sequences of all gene copies are virtually identical within a species although they diverge normally between species. In eukaryotes, gene conversion and unequal crossing over are the proposed mechanisms for concerted evolution of tandemly repeated sequences, whereas dispersed genes are homogenized by gene conversion. However, the homogenization mechanisms for multiple-copy, normally dispersed, prokaryotic rRNA genes are not well understood. Here we compared the sequences of multiple paralogous rRNA genes within a genome in 12 prokaryotic organisms that have multiple copies of the rRNA genes. Within a genome, putative sequence conversion tracts were found throughout the entire length of each individual rRNA genes and their immediate flanks. Individual conversion events convert only a short sequence tract, and the conversion partners can be any paralogous genes within the genome. Interestingly, the genic sequences undergo much slower divergence than their flanking sequences. Moreover, genomic context and operon organization do not affect rRNA gene homogenization. Thus, gene conversion underlies concerted evolution of bacterial rRNA genes, which normally occurs within genic sequences, and homogenization of flanking regions may result from co-conversion with the genic sequence. Received: 31 March 2000 / Accepted: 15 June 2000  相似文献   

10.
Pseudomonas syringae are differentiated into approximately 50 pathovars with different plant pathogenicities and host specificities. To understand its pathogenicity differentiation and the evolutionary mechanisms of pathogenicity-related genes, phylogenetic analyses were conducted using 56 strains belonging to 19 pathovars. gyrB and rpoD were adopted as the index genes to determine the course of bacterial genome evolution, and hrpL and hrpS were selected as the representatives of the pathogenicity-related genes located on the genome (chromosome). Based on these data, NJ, MP, and ML phylogenetic trees were constructed, and thus 3 trees for each gene and 12 gene trees in total were obtained, all of which showed three distinct monophyletic groups: Groups 1, 2 and 3. The observation that the same set of OTUs constitute each group in all four genes suggests that these genes had not experienced any intergroup horizontal gene transfer within P. syringae but have been stable on and evolved along with the P. syringae genome. These four index genes were then compared with another pathogenicity-related gene, argK (the phaseolotoxin-resistant ornithine carbamoyltransferase gene, which exists within the argK–tox gene cluster). All 13 strains of pv. phaseolicola and pv. actinidiae used had been confirmed to produce phaseolotoxin and to have argK, whose sequences were completely identical, without a single synonymous substitution among the strains used (Sawada et al. 1997a). On the other hand, argK were not present on the genomes of the other 43 strains used other than pv. actinidiae and pv. phaseolicola. Thus, the productivity of phaseolotoxin and the possession of the argK gene were shown at only two points on the phylogenetic tree: Group 1 (pv. actinidiae) and Group 3 (pv. phaseolicola). A t test between these two pathovars for the synonymous distances of argK and the tandemly combined sequence of the four index genes showed a high significance, suggesting that the argK gene (or argK–tox gene cluster) experienced horizontal gene transfer and expanded its distribution over two pathovars after the pathovars had separated, thus showing a base substitution pattern extremely different from that of the noncluster region of the genome. Received: 18 January 1999 / Accepted: 25 May 1999  相似文献   

11.
12.
13.
The genomic organization of the hsp83 gene of Drosophila auraria, a far-eastern endemic species belonging to the montium subgroup of the melanogaster species group, is presented here. Based on in situ hybridization on polytene chromosomes, cDNA and genomic clone mapping, nucleotide sequencing, and genomic Southern analysis, hsp83 is shown to be present as a single-copy gene at locus 64B on the 3L chromosome arm in D. auraria. This gene is organized into two exons separated by a 929-bp intron. The first exon represents the mRNA leader sequence and is not translated, while the coding region, having a length of 2,151 bp, is solely included in the second exon. Nucleotide sequence comparisons of D. auraria hsp83 with homologous sequences from other organisms show high conservation of the coding region (88–92% identity) in the genus Drosophila, in addition to the conserved genomic organization of two-exons–one-intron, of comparable size and arrangement. A phylogenetic tree based on the protein sequences of homologous genes from representative organisms is in accord with the accredited phylogenetic position of D. auraria. In the hsp83 gene region, a second case of long antiparallel coupled open reading frames (LAC ORFs) for this species was found. The antiparallel to the hsp83 gene ORF is 1,554 bases long, while the two ORFs overlap has a size of 1,548 bp. The anti-hsp83 ORF does not show significant homology to any known gene sequences. In addition, no similar LAC ORF structures were found in homologous gene regions of other organisms. Received: 18 April 1997 / Accepted: 1 August 1997  相似文献   

14.
15.
We report sequences for nuclear lamins from the teleost fish Danio and six invertebrates. These include two cnidarians (Hydra and Tealia), one priapulid, two echinoderms, and the cephalochordate Branchiostoma. Combining these results with earlier data on Drosophila, Caenorhabditis elegans, and various vertebrates, the following conclusions on lamin evolution can be drawn. First, all invertebrate lamins resemble in size the vertebrate B-type lamin. Second, all lamins described previously for amphibia, birds and mammals as well as the first lamin of a fish, characterized here, show a cluster of 7 to 12 acidic residues in the tail domain. Since this acidic cluster is absent from all invertebrate lamins including that of the cephalochordate Branchiostoma, it was acquired with the vertebrate lineage. The larger A-type lamin of differentiated cells must have arisen subsequently by gene duplication and insertion of an extra exon. This extra exon of the vertebrate A-lamins is the only major change in domain organization in metazoan lamin evolution. Third, the three introns of the Hydra and Priapulus genes correspond in position to the last three introns of vertebrate B-type lamin genes. Thus the entirely different gene organization of the C. elegans and Drosophila Dmo genes seems to reflect evolutionary drift, which probably also accounts for the fact that C. elegans has the most diverse lamin sequence. Finally we discuss the possibility that two lamin types, a constitutively expressed one and a developmentally regulated one, arose independently on the arthropod and vertebrate lineages. Received: 4 February 1999 / Accepted: 1 April 1999  相似文献   

16.
Photosynthetic eukaryotes can, according to features of their chloroplasts, be divided into two major groups: the red and the green lineage of plastid evolution. To extend the knowledge about the evolution of the red lineage we have sequenced and analyzed the chloroplast genome (cp-genome) of Cyanidium caldarium RK1, a unicellular red alga (AF022186). The analysis revealed that this genome shows several unusual structural features, such as a hypothetical hairpin structure in a gene-free region and absence of large repeat units. We provide evidence that this structural organization of the cp-genome of C. caldarium may be that of the most ancient cp-genome so far described. We also compared the cp-genome of C. caldarium to the other known cp-genomes of the red lineage. The cp-genome of C. caldarium cannot be readily aligned with that of Porphyra purpurea, a multicellular red alga, or Guillardia theta due to a displacement of a region of the cp-genome. The phylogenetic tree reveals that the secondary endosymbiosis, through which G. theta evolved, took place after the separation of the ancestors of C. caldarium and P. purpurea. We found several genes unique to the cp-genome of C. caldarium. Five of them seem to be involved in the building of bacterial cell envelopes and may be responsible for the thermotolerance of the chloroplast of this alga. Two additional genes may play a role in stabilizing the photosynthetic machinery against salt stress and detoxification of the chloroplast. Thus, these genes may be unique to the cp-genome of C. caldarium and may be required for the endurance of the extreme living conditions of this alga. Received: 3 June 2000 / Accepted: 18 July 2000  相似文献   

17.
In this work detailed statistics on ancestral gene duplication and gene conservation in completely sequenced cellular genomes are presented. Analysis of open reading frame (ORF) products having simultaneous matches in several distinct organisms showed a significant correlation between duplication and conservation. Systematic comparisons of predicted proteomes of 23 organisms (including 20 that have been completely sequenced), have allowed us to quantify the degree of ancestral duplication within each genome and the level of conservation between genomes, using threshold values calculated for individual organisms. Statistical analysis of various gene proportions revealed interesting trends in gene structure and evolution, such as that (a) more than one-quarter (25%–66%) of the predicted ORF products of the surveyed organisms are not unique, indicating a high level of ancestral duplications; (b) levels of exclusive conservation within Bacteria are higher than those within the eukaryal or archaeal domains; and (c) at least one-half (47–99%) of the total predicted ORF products in the surveyed genomes have one or several highly significant matches in another genome. Significant matches are based on simulations taking into account the mean size of ORF products and the composition of each target organism's proteome. The methodology we have developed ensures stability and comparability of our results as the number of completely sequenced genomes increases. Received: 4 May 1998 / Accepted: 28 September 1998  相似文献   

18.
The extracellular hemoglobins of cladocerans derive from the aggregation of 12 two-domain globin subunits that are apparently encoded by four genes. This study establishes that at least some of these genes occur as a tandem array in both Daphnia magna and Daphnia exilis. The genes share a uniform structure; a bridge intron separates two globin domains which each include three exons and two introns. Introns are small, averaging just 77 bp, but a longer sequence (2.2–3.2 kb) separates adjacent globin genes. A survey of structural diversity in globin genes from other daphniids revealed three independent cases of intron loss, but exon lengths were identical, excepting a 3-bp insertion in exon 5 of Simocephalus. Heterogeneity in the extent of nucleotide divergence was marked among exons, largely as a result of the pronounced diversification of the terminal exon. This variation reflected, in part, varying exposure to concerted evolution. Conversion events were frequent in exons 1–4 but were absent from exons 5 and 6. Because of this difference, the results of phylogenetic analyses were strongly affected by the sequences employed in this construction. Phylogenies based on total nucleotide divergence in exons 1–4 revealed affinities among all genes isolated from a single species, reflecting the impact of gene conversion events. In contrast, phylogenies based on total nucleotide divergence in exons 5 and 6 revealed affinities among orthologous genes from different taxa. Received: 8 March 1999 / Accepted: 14 July 1999  相似文献   

19.
In bacteria, synonymous codon usage can be considerably affected by base composition at neighboring sites. Such context-dependent biases may be caused by either selection against specific nucleotide motifs or context-dependent mutation biases. Here we consider the evolutionary conservation of context-dependent codon bias across 11 completely sequenced bacterial genomes. In particular, we focus on two contextual biases previously identified in Escherichia coli; the avoidance of out-of-frame stop codons and AGG motifs. By identifying homologues of E. coli genes, we also investigate the effect of gene expression level in Haemophilus influenzae and Mycoplasma genitalium. We find that while context-dependent codon biases are widespread in bacteria, few are conserved across all species considered. Avoidance of out-of-frame stop codons does not apply to all stop codons or amino acids in E. coli, does not hold for different species, does not increase with gene expression level, and is not relaxed in Mycoplasma spp., in which the canonical stop codon, TGA, is recognized as tryptophan. Avoidance of AGG motifs shows some evolutionary conservation and increases with gene expression level in E. coli, suggestive of the action of selection, but the cause of the bias differs between species. These results demonstrate that strong context-dependent forces, both selective and mutational, operate on synonymous codon usage but that these differ considerably between genomes. Received: 6 May 1999 / Accepted: 29 October 1999  相似文献   

20.
In translation, separate aminoacyl-tRNA synthetases attach the 20 different amino acids to their cognate tRNAs, with the exception of glutamine. Eukaryotes and some bacteria employ a specific glutaminyl-tRNA synthetase (GlnRS) which other Bacteria, the Archaea (archaebacteria), and organelles apparently lack. Instead, tRNAGln is initially acylated with glutamate by glutamyl-tRNA synthetase (GluRS), then the glutamate moiety is transamidated to glutamine. Lamour et al. [(1994) Proc Natl Acad Sci USA 91:8670–8674] suggested that an early duplication of the GluRS gene in eukaryotes gave rise to the gene for GlnRS—a copy of which was subsequently transferred to proteobacteria. However, questions remain about the occurrence of GlnRS genes among the Eucarya (eukaryotes) outside of the ``crown' taxa (animals, fungi, and plants), the distribution of GlnRS genes in the Bacteria, and their evolutionary relationships to genes from the Archaea. Here, we show that GlnRS occurs in the most deeply branching eukaryotes and that putative GluRS genes from the Archaea are more closely related to GlnRS and GluRS genes of the Eucarya than to those of Bacteria. There is still no evidence for the existence of GlnRS in the Archaea. We propose that the last common ancestor to contemporary cells, or cenancestor, used transamidation to synthesize Gln-tRNAGln and that both the Bacteria and the Archaea retained this pathway, while eukaryotes developed a specific GlnRS gene through the duplication of an existing GluRS gene. In the Bacteria, GlnRS genes have been identified in a total of 10 species from three highly diverse taxonomic groups: Thermus/Deinococcus, Proteobacteria γ/β subdivision, and Bacteroides/Cytophaga/Flexibacter. Although all bacterial GlnRS form a monophyletic group, the broad phyletic distribution of this tRNA synthetase suggests that multiple gene transfers from eukaryotes to bacteria occurred shortly after the Archaea–eukaryote divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号