首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The overwhelming majority of DNA photoproducts in UV-irradiated spores is a unique thymine dimer called spore photoproduct (SP, 5-thymine-5,6-dihydrothymine). This lesion is repaired by the spore photoproduct lyase (SP lyase) enzyme that directly reverts SP to two unmodified thymines. The SP lyase is an S-adenosylmethionine-dependent iron-sulfur protein that belongs to the radical S-adenosylmethionine superfamily. In this study, by using a well characterized preparation of the SP lyase enzyme from Bacillus subtilis, we show that SP in the form of a dinucleoside monophosphate (spore photoproduct of thymidilyl-(3'-5')-thymidine) is efficiently repaired, allowing a kinetic characterization of the enzyme. The preparation of this new substrate is described, and its identity is confirmed by mass spectrometry and comparison with authentic spore photoproduct. The fact that the spore photoproduct of thymidilyl-(3'-5')-thymidine dimer is repaired by SP lyase may indicate that the SP lesion does not absolutely need to be contained within a single- or double-stranded DNA for recognition and repaired by the SP lyase enzyme.  相似文献   

2.
Spore photoproduct lyase (SP lyase), a member of the radical S-adenosylmethionine superfamily of enzymes, catalyzes the repair of 5-thyminyl-5,6-dihydrothymine [spore photoproduct (SP)], a type of UV-induced DNA damage unique to bacterial spores. The anaerobic purification and characterization of Clostridium acetobutylicum SP lyase heterologously expressed in Escherichia coli, and its catalytic activity in repairing stereochemically defined synthetic dinucleotide SPs was investigated. The purified enzyme contains between 2.3 and 3.1 iron atoms per protein. Electron paramagnetic resonance (EPR) spectroscopy reveals an isotropic signal centered at g = 1.99, characteristic of a [3Fe–4S]+ cluster accounting for 3–4% of the iron in the sample. Upon reduction, a nearly axial signal (g = 2.03, 1.93 and 1.92) characteristic of a [4Fe–4S]+ cluster is observed that accounts for 34–45% of total iron. Addition of S-adenosylmethionine to the reduced enzyme produces a rhombic signal (g = 2.02, 1.93, 1.82) unique to the S-adenosyl-l-methionine complex while decreasing the overall EPR intensity. This reduced enzyme is shown to rapidly and completely repair the 5R diastereomer of a synthetic dinucleotide SP with a specific activity of 7.1 ± 0.6 nmol min−1 mg−1, whereas no repair was observed for the 5S diastereomer.  相似文献   

3.
Li L 《Biochimica et biophysica acta》2012,1824(11):1264-1277
Spore photoproduct lyase (SPL) repairs a special thymine dimer 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct or SP at the bacterial early germination phase. SP is the exclusive DNA photo-damage product in bacterial endospores; its generation and swift repair by SPL are responsible for the spores' extremely high UV resistance. The early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair the SP in the absence of light. The research in the past decade further established SPL as a radical SAM enzyme, which utilizes a tri-cysteine CXXXCXXC motif to harbor a [4Fe-4S] cluster. At the 1+ oxidation state, the cluster provides an electron to the S-adenosylmethionine (SAM), which binds to the cluster in a bidentate manner as the fourth and fifth ligands, to reductively cleave the CS bond associated with the sulfonium ion in SAM, generating a reactive 5'-deoxyadenosyl (5'-dA) radical. This 5'-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. SAM is suggested to be regenerated at the end of each catalytic cycle; and only a catalytic amount of SAM is needed in the SPL reaction. The H atom source for the back donation step is suggested to be a cysteine residue (C141 in Bacillus subtilis SPL), and the H-atom transfer reaction leaves a thiyl radical behind on the protein. This thiyl radical thus must participate in the SAM regeneration process; however how the thiyl radical abstracts an H atom from the 5'-dA to regenerate SAM is unknown. This paper reviews and discusses the history and the latest progress in the mechanistic elucidation of SPL. Despite some recent breakthroughs, more questions are raised in the mechanistic understanding of this intriguing DNA repair enzyme. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.  相似文献   

4.
Spore photoproduct lyase (SPL) catalyzes the repair of the UV lesion spore photoproduct (SP) in a reaction dependent on S-adenosyl-l-methionine (SAM). We have utilized H/D exchange to show that in the presence of SAM, a significant reduction in H/D exchange is observed upon binding SPTpT or undamaged oligonucleotide, indicating a shift of 20 or 10 amide protons, respectively, from a rapidly-exchangable state to a fully-protected conformation. In the absence of SAM, neither the oligonucleotide nor the SPTpT produce a significant perturbation in H/D exchange, indicating SAM is a requisite binding partner. Performing the same experiments in aerobic conditions reduced the magnitude of ligand-induced structural changes, consistent with the importance of the oxygen-sensitive iron–sulfur cluster for SAM and substrate binding.  相似文献   

5.
The major DNA photoproduct in UV-irradiated Bacillus subtilis spores is the thymine dimer named spore photoproduct (SP, 5-(alpha-thyminyl)-5,6-dihydrothymine). The SP lesion has been found to be efficiently repaired by SP lyase (SPL) a very specific enzyme that reverses the SP to two intact thymines, at the origin of the great resistance of the spores to UV irradiation. SPL belongs to a superfamily of [4Fe-4S] iron-sulfur enzymes, called "Radical-SAM." Here, we show that the single substitution of cysteine 141 into alanine, a residue fully conserved in Bacillus species and previously shown to be essential for spore DNA repair in vivo, has a major impact on the outcome of the SPL-dependent repair reaction in vitro. Indeed the modified enzyme catalyzes the almost quantitative conversion of the SP lesion into one thymine and one thymine sulfinic acid derivative. This compound results from the trapping of the allyl-type radical intermediate by dithionite, used as reducing agent in the reaction mixture. Implications of the data reported here regarding the repair mechanism and the role of Cys-141 are discussed.  相似文献   

6.
7.
A recently discovered superfamily of enzymes function using chemically novel mechanisms, in which S-adenosylmethionine (SAM) serves as an oxidizing agent in DNA repair and the biosynthesis of vitamins, coenzymes and antibiotics. Members of this superfamily, the radical SAM enzymes, are related by the cysteine motif CxxxCxxC, which nucleates the [4Fe-4S] cluster found in each. A common thread in the novel chemistry of these proteins is the use of a strong reducing agent--a low-potential [4Fe-4S](1+) cluster--to generate a powerful oxidizing agent, the 5'-deoxyadenosyl radical, from SAM. Recent results are beginning to determine the unique biochemistry for some of the radical SAM enzymes, for example, lysine 2,3 aminomutase, pyruvate formate lyase activase and biotin synthase.  相似文献   

8.
The Geobacillus stearothermophilus splG gene encodes a thermophilic spore photoproduct lyase (SplG) that belongs to the family of radical S-adenosylmethionine (AdoMet) enzymes. The aerobically purified apo-SplG forms a homodimer, which contains one [4Fe-4S] cluster per monomer unit after reconstitution to the holoform. Formation of the [4Fe-4S] cluster was proven by quantification of the amount of iron and sulfur per homodimer and by UV and EPR spectroscopy. The UV spectrum features a characteristic absorbance at 420 nm typical for [4Fe-4S] clusters, and the EPR data were found to be identical to those of other proteins containing an [4Fe-4S]+ center. Probing of the activity of the holo-SplG with oligonucleotides containing one spore photoproduct lesion at a defined site proved that the enzyme is able to turn over substrate. In addition to repair, we observed cleavage of AdoMet to generate 5'-deoxyadenosine. In the presence of aza-AdoMet the SplG is completely inhibited, which provides direct support for the repair mechanism.  相似文献   

9.
10.
11.
Upon UV irradiation, Bacillus subtilis spore DNA accumulates the novel thymine dimer 5-thyminyl-5,6-dihydrothymine. Spores can repair this "spore photoproduct" (SP) upon germination either by the uvr-mediated general excision repair pathway or by the SP-specific spl pathway, which involves in situ monomerization of SP to two thymines by an enzyme named SP lyase. Mutants lacking both repair pathways produce spores that are extremely sensitive to UV. For cloning DNA that can repair a mutation in the spl pathway called spl-1, a library of EcoRI fragments of chromosomal DNA from B. subtilis 168 was constructed in integrative plasmid pJH101 and introduced by transformation into a mutant B. subtilis strain that carries both the uvrA42 and spl-1 mutations, and transformants whose spores exhibited UV resistance were selected by UV irradiation. With a combination of genetic and physical mapping techniques, the DNA responsible for the restoration of UV resistance was shown to be present on a 2.3-kb EcoRI-HindIII fragment that was mapped to a new locus in the metC-pyrD region of the B. subtilis chromosome immediately downstream from the pstI gene. The spl coding sequence was localized on the cloned fragment by analysis of in vitro-generated deletions and by nucleotide sequencing. The spl nucleotide sequence contains an open reading frame capable of encoding a 40-kDa polypeptide that shows regional amino acid sequence homology to DNA photolyases from a number of bacteria and fungi.  相似文献   

12.
Bacterial endospores are 1 to 2 orders of magnitude more resistant to 254-nm UV (UV-C) radiation than are exponentially growing cells of the same strain. This high UV resistance is due to two related phenomena: (i) DNA of dormant spores irradiated with 254-nm UV accumulates mainly a unique thymine dimer called the spore photoproduct (SP), and (ii) SP is corrected during spore germination by two major DNA repair pathways, nucleotide excision repair (NER) and an SP-specific enzyme called SP lyase. To date, it has been assumed that these two factors also account for resistance of bacterial spores to solar UV in the environment, despite the fact that sunlight at the Earth's surface consists of UV-B, UV-A, visible, and infrared wavelengths of approximately 290 nm and longer. To test this assumption, isogenic strains of Bacillus subtilis lacking either the NER or SP lyase DNA repair pathway were assayed for their relative resistance to radiation at a number of UV wavelengths, including UV-C (254 nm), UV-B (290 to 320 nm), full-spectrum sunlight, and sunlight from which the UV-B portion had been removed. For purposes of direct comparison, spore UV resistance levels were determined with respect to a calibrated biological dosimeter consisting of a mixture of wild-type spores and spores lacking both DNA repair systems. It was observed that the relative contributions of the two pathways to spore UV resistance change depending on the UV wavelengths used in a manner suggesting that spores irradiated with light at environmentally relevant UV wavelengths may accumulate significant amounts of one or more DNA photoproducts in addition to SP. Furthermore, it was noted that upon exposure to increasing wavelengths, wild-type spores decreased in their UV resistance from 33-fold (UV-C) to 12-fold (UV-B plus UV-A sunlight) to 6-fold (UV-A sunlight alone) more resistant than mutants lacking both DNA repair systems, suggesting that at increasing solar UV wavelengths, spores are inactivated either by DNA damage not reparable by the NER or SP lyase system, damage caused to photosensitive molecules other than DNA, or both.  相似文献   

13.
Thiamine pyrophosphate (TPP) is an essential cofactor for all forms of life. In Salmonella enterica, the thiH gene product is required for the synthesis of the 4-methyl-5-beta hydroxyethyl-thiazole monophosphate moiety of TPP. ThiH is a member of the radical S-adenosylmethionine (AdoMet) superfamily of proteins that is characterized by the presence of oxygen labile [Fe-S] clusters. Lack of an in vitro activity assay for ThiH has hampered the analysis of this interesting enzyme. We circumvented this problem by using an in vivo activity assay for ThiH. Random and directed mutagenesis of the thiH gene was performed. Analysis of auxotrophic thiH mutants defined two classes, those that required thiazole to make TPP (null mutants) and those with thiamine auxotrophy that was corrected by either L-tyrosine or thiazole (ThiH* mutants). Increased levels of AdoMet also corrected the thiamine requirement of members of the latter class. Residues required for in vivo function were identified and are discussed in the context of structures available for AdoMet enzymes.  相似文献   

14.
AdoMet radical enzymes are involved in processes such as cofactor biosynthesis, anaerobic metabolism, and natural product biosynthesis. These enzymes utilize the reductive cleavage of S-adenosylmethionine (AdoMet) to afford l-methionine and a transient 5'-deoxyadenosyl radical, which subsequently generates a substrate radical species. By harnessing radical reactivity, the AdoMet radical enzyme superfamily is responsible for an incredible diversity of chemical transformations. Structural analysis reveals that family members adopt a full or partial Triose-phosphate Isomerase Mutase (TIM) barrel protein fold, containing core motifs responsible for binding a catalytic [4Fe-4S] cluster and AdoMet. Here we evaluate over twenty structures of AdoMet radical enzymes and classify them into two categories: 'traditional' and 'ThiC-like' (named for the structure of 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase (ThiC)). In light of new structural data, we reexamine the 'traditional' structural motifs responsible for binding the [4Fe-4S] cluster and AdoMet, and compare and contrast these motifs with the ThiC case. We also review how structural data combine with biochemical, spectroscopic, and computational data to help us understand key features of this enzyme superfamily, such as the energetics, the triggering, and the molecular mechanisms of AdoMet reductive cleavage. This article is part of a Special Issue entitled: Radical SAM Enzymes and Radical Enzymology.  相似文献   

15.
Dodson ML  Walker RC  Lloyd RS 《PloS one》2012,7(2):e31377
In order to suggest detailed mechanistic hypotheses for the formation and dehydration of a key carbinolamine intermediate in the T4 pyrimidine dimer glycosylase (T4PDG) reaction, we have investigated these reactions using steered molecular dynamics with a coupled quantum mechanics-molecular mechanics potential (QM/MM). We carried out simulations of DNA abasic site carbinolamine formation with and without a water molecule restrained to remain within the active site quantum region. We recovered potentials of mean force (PMF) from thirty replicate reaction trajectories using Jarzynski averaging. We demonstrated feasible pathways involving water, as well as those independent of water participation. The water-independent enzyme-catalyzed reaction had a bias-corrected Jarzynski-average barrier height of approximately (6.5 kcal mol(-1) (27.2 kJ mol(-1)) for the carbinolamine formation reaction and 44.5 kcal mol(-1) (186 kJ mol(-1)) for the reverse reaction at this level of representation. When the proton transfer was facilitated with an intrinsic quantum water, the barrier height was approximately 15 kcal mol(-1) (62.8 kJ mol(-1)) in the forward (formation) reaction and 19 kcal mol(-1) (79.5 kJ mol(-1)) for the reverse. In addition, two modes of unsteered (free dynamics) carbinolamine dehydration were observed: in one, the quantum water participated as an intermediate proton transfer species, and in the other, the active site protonated glutamate hydrogen was directly transferred to the carbinolamine oxygen. Water-independent unforced proton transfer from the protonated active site glutamate carboxyl to the unprotonated N-terminal amine was also observed. In summary, complex proton transfer events, some involving water intermediates, were studied in QM/MM simulations of T4PDG bound to a DNA abasic site. Imine carbinolamine formation was characterized using steered QM/MM molecular dynamics. Dehydration of the carbinolamine intermediate to form the final imine product was observed in free, unsteered, QM/MM dynamics simulations, as was unforced acid-base transfer between the active site carboxylate and the N-terminal amine.  相似文献   

16.
17.
LigD 3′-phosphoesterase (PE) is a component of the bacterial NHEJ apparatus that performs 3′-end-healing reactions at DNA breaks. The tertiary structure, active site and substrate specificity of bacterial PE are unique vis–à-vis other end-healing enzymes. PE homologs are present in archaea, but their properties are uncharted. Here, we demonstrate the end-healing activities of two archaeal PEs—Candidatus Korarchaeum cryptofilum PE (CkoPE; 117 amino acids) and Methanosarcina barkeri PE (MbaPE; 151 amino acids)—and we report their atomic structures at 1.1 and 2.1 Å, respectively. Archaeal PEs are minimized versions of bacterial PE, consisting of an eight-stranded β barrel and a 310 helix. Their active sites are located in a crescent-shaped groove on the barrel’s outer surface, wherein two histidines and an aspartate coordinate manganese in an octahedral complex that includes two waters and a phosphate anion. The phosphate is in turn coordinated by arginine and histidine side chains. The conservation of active site architecture in bacterial and archaeal PEs, and the concordant effects of active site mutations, underscore a common catalytic mechanism, entailing transition state stabilization by manganese and the phosphate-binding arginine and histidine. Our results fortify the proposal that PEs comprise a DNA repair superfamily distributed widely among taxa.  相似文献   

18.
Wang SC  Frey PA 《Biochemistry》2007,46(45):12889-12895
The common step in the actions of members of the radical SAM superfamily of enzymes is the one-electron reductive cleavage of S-adenosyl-l-methionine (SAM) into methionine and the 5'-deoxyadenosyl radical. The source of the electron is the [4Fe-4S]1+ cluster characterizing the radical SAM superfamily, to which SAM is directly ligated through its methionyl carboxylate and amino groups. The energetics of the reductive cleavage of SAM is an outstanding question in the actions of radical SAM enzymes. The energetics is here reported for the action of lysine 2,3-aminomutase (LAM), which catalyzes the interconversion of l-lysine and l-beta-lysine. From earlier work, the reduction potential of the [4Fe-4S]2+/1+ cluster in LAM is -0.43 V with SAM bound to the cluster (Hinckley, G. T., and Frey, P. A. (2006) Biochemistry 45, 3219-3225), 1.4 V higher than the reported value for trialkylsulfonium ions in solution. The midpoint reduction potential upon binding l-lysine has been estimated to be -0.6 V from the values of midpoint potentials measured with SAM bound to the cluster and l-alanine in place of l-lysine, with S-adenosyl-l-homocysteine (SAH) bound to the cluster in the presence of l-lysine, and with SAH bound to the cluster in the presence of l-alanine or of l-alanine and ethylamine in place of l-lysine. The reduction potential for SAM has been estimated to be -0.99 V from the measured value for S-3',4'-anhydroadenosyl-l-methionine. The reduction potential for the [4Fe-4S] cluster is lowered 0.17 V by the binding of lysine to LAM, and the binding of SAM to the [4Fe-4S] cluster in LAM elevates its reduction potential by 0.81 V. Thus, the binding of l-lysine to LAM contributes 4 kcal mol-1, and the binding of SAM to the [4Fe-4S] cluster in LAM contributes 19 kcal mol-1 toward lowering the barrier for reductive cleavage of SAM from 32 kcal mol-1 in solution to 9 kcal mol-1 at the active site of LAM.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号