首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effect of lipopolysaccharide (LPS) treatment on the expression of manganese and copper/zinc superoxide dismutase (MnSOD and Cu/ZnSOD) mRNA and protein in resident peritoneal macrophages and lung endothelial cells derived from LPS-sensitive (LPS-s) and LPS-resistant (LPS-r) mice. Macrophages from both LPS-s and LPS-r mice treated with LPS for 24 h produced increased levels of MnSOD mRNA and protein. In contrast, levels of lung endothelial cell MnSOD mRNA and protein from LPS-s mice were increased by LPS treatment, while no increases in these parameters were observed in endothelial cells from LPS-r mice. Tumor necrosis factor-alpha (TNF alpha) treatment, however, did increase levels of MnSOD mRNA in both LPS-s and LPS-r endothelial cells to an equal extent. Both macrophage and endothelial cell Cu/ZnSOD mRNA and protein levels were not significantly affected by LPS treatment. These results demonstrate that the mutation that affects susceptibility to LPS in LPS-r mice exerts a differential influence on MnSOD inducibility in a cell specific manner.  相似文献   

2.
Previous studies have shown that the Ron receptor tyrosine kinase is an important regulator of the acute lung inflammatory response induced by intranasal administration of bacterial LPS. Compared to wild-type mice, complete loss of the Ron receptor in all cell types in?vivo was associated with increased lung damage as determined by histological analyses and several markers of lung injury including increases in pro-inflammatory cytokines such as TNF-α. Tumor-necrosis factor-α is a multifunctional cytokine secreted by macrophages, which plays a major role in inflammation and is a central mediator of several disease states including rheumatoid arthritis and sepsis. Based on increased TNF-α production observed in the Ron-deficient mice, we hypothesized that Ron receptor function in the inflammatory cell compartment is essential for the regulating lung injury in?vivo. To test this hypothesis, we generated myeloid lineage-specific Ron-deficient mice. In this study, we report that loss of Ron signaling selectively in myeloid cells results in increased lung injury following intranasal administration of LPS as measured by increases in TNF-α production, ensuing neutrophil accumulation and increased lung histopathology. These findings corroborate the role of Ron receptor tyrosine kinase as a negative regulator of inflammation and further demonstrate the in?vivo significance of Ron signaling selectively in myeloid cells as a major regulator of this response in?vivo. These data authenticate Ron as a potential target in innate immunity and TNF-α-mediated pathologies.  相似文献   

3.
Nitric oxide (.NO) attenuates hydrogen peroxide (H(2)O(2))-mediated injury in porcine pulmonary artery endothelial cells (PAECs) and modulates intracellular levels of cGMP and cAMP. We hypothesized that.NO attenuates H(2)O(2)-induced PAEC monolayer barrier dysfunction through cyclic nucleotide-dependent signaling mechanisms. To examine this hypothesis, cultured PAEC monolayers were treated with H(2)O(2), and barrier function was measured as transmonolayer albumin clearance. H(2)O(2) caused significant PAEC barrier dysfunction that was attenuated by intracellular as well as extracellular.NO generation.NO increased PAEC cGMP and cAMP levels, but treatment with inhibitors of soluble guanylate cyclase or protein kinase G did not abrogate.NO-mediated barrier protection. In contrast, H(2)O(2) decreased protein kinase A activity, and inhibiting protein kinase A abrogated the protective effect of.NO. H(2)O(2)-induced barrier dysfunction was not associated with decreased levels of cGMP or cAMP. 3-Isobutyl-1-methylxanthine and the cGMP analog 8-bromo-cGMP had little effect on H(2)O(2)-mediated endothelial barrier dysfunction, whereas 8-bromo-cAMP plus 3-isobutyl-1-methylxanthine was protective. These results indicate that.NO modulates vascular endothelial barrier function through cAMP-dependent signaling mechanisms.  相似文献   

4.
While it has been suggested that IL‐33 plays pathogenic roles in various disorders, the factors that stimulate IL‐33 production are poorly characterized. In the present study, the effect of cyclic adenosine monophosphate (cAMP) signaling on IL‐33 production in RAW264.7 macrophages in response to various doses of LPS was examined. High‐dose LPS treatment induced IL‐33 and TNF protein production in RAW264.7 macrophages. In contrast, low‐dose LPS failed to induce IL‐33 production while significantly inducing TNF production. In the presence of the membrane‐permeable cAMP analog 8‐Br‐cAMP, low‐dose LPS induced vigorous IL‐33 production. This phenomenon was consistent with amounts of mRNA. Similarly, the cAMP‐increasing agent adrenaline also enhanced the sensitivity of RAW264.7 macrophages to LPS as demonstrated by IL‐33 production. The protein kinase A (PKA) inhibitor H89 blocked the effects of 8‐Br‐cAMP and adrenaline on IL‐33 production, suggesting that PKA is involved in IL‐33 induction. Taken together, cAMP‐mediated signaling pathway appears to enhance the sensitivity of RAW264.7 macrophages to LPS with respect to IL‐33 production. Our findings suggest that stress events and the subsequent secretion of adrenaline enhance macrophage production via IL‐33; this process may be associated with the pathogenesis of various disorders involving IL‐33.  相似文献   

5.
We isolated cDNA of the mouse homologue of the src-suppressed C kinase substrate (SSeCKS) and analyzed the effects of lipopolysaccharide (LPS) injection on the tissue expression pattern of this protein. Northern blotting analysis showed that SSeCKS mRNA was expressed abundantly in the testis but at undetectable levels in other tissues of untreated control mice. Intraperitoneal administration of LPS strongly induced SSeCKS mRNA expression in the lung, heart, liver, spleen, kidney, lymph node, adrenal gland, and pituitary gland, as well as in the brain. In lung and spleen, the SSeCKS mRNA levels increased almost 10-fold at 1 hr after LPS injection and persisted at high levels until 4 hr. Both in situ hybridization and immunohistochemical studies revealed that LPS administration conspicuously elevated expression of SSeCKS mRNA and protein in vascular endothelial cells of several organs. Ectopic expression of SSeCKS caused loss of cytoplasmic F-actin fibers in the mouse endothelial cell line LEII. These results indicate that SSeCKS is one of the major LPS-responsive proteins and may participate in alteration of cytoskeletal architecture in endothelial cells during inflammation.  相似文献   

6.
The presence of excess fluid in the interstitium and air spaces of the lung presents severe restrictions to gas exchange. The pulmonary endothelial barrier regulates the flux of fluid and plasma proteins from the vascular space into the underlying tissue. The integrity of this endothelial barrier is dynamically regulated by transitions in cAMP (3',5'-cyclic adenosine monophosphate), which are synthesized in discrete subcellular compartments. Cyclic AMP generated in the subplasma membrane compartment acts through PKA and Epac (exchange protein directly activated by cAMP) to tighten cell adhesions, strengthen cortical actin, reduce actomyosin contraction, and decrease permeability. Confining cAMP within the subplasma membrane space is critical to its barrier-protective properties. When cAMP escapes the near membrane compartment and gains access to the cytosolic compartment, or when soluble adenylyl cyclases generate cAMP within the cytosolic compartment, this second messenger activates established cytosolic cAMP signaling cascades to perturb the endothelial barrier through PKA-mediated disruption of microtubules. Thus the concept of cAMP compartmentalization in endothelial barrier regulation is gaining momentum and new possibilities are being unveiled for cytosolic cAMP signaling with the emergence of the bicarbonate-regulated mammalian soluble adenylyl cyclase (sAC or AC10).  相似文献   

7.
8.
We have reported that alpha 1-acid glycoprotein (AGP) gene expression was induced in lung tissue and in alveolar type II cells during pulmonary inflammatory processes, suggesting that local production of this immunomodulatory protein might contribute to the modulation of inflammation within the alveolar space. Because AGP may also be secreted by other cell types in the alveolus, we have investigated the expression and the regulation of the AGP gene in human and rat alveolar macrophages. Spontaneous AGP secretion by alveolar macrophages was increased 4-fold in patients with interstitial lung involvement compared with that in controls. In the rat, immunoprecipitation of [35S]methionine-labeled cell lysates showed that alveolar macrophages synthesize and secrete AGP. IL-1 beta had no effect by itself, but potentiated the dexamethasone-induced increase in AGP production. RNase protection assay demonstrated that AGP mRNA, undetectable in unstimulated cells, was induced by dexamethasone. Conditioned medium from LPS-stimulated macrophages as well as IL-1 beta had no effect by themselves, but potentiated the dexamethasone-induced increase in AGP mRNA levels. In addition to cytokines, PGE2 as well as dibutyryl cAMP increased AGP mRNA levels in the presence of dexamethasone. When AGP expression in other cells of the monocyte/macrophage lineage was examined, weak and no AGP production by human blood monocytes and by rat peritoneal macrophages, respectively, were observed. Our data showed that 1) AGP expression is inducible specifically in alveolar macrophages in vivo and in vitro; and 2) PGE2 and cAMP act as new positive stimuli for AGP gene expression.  相似文献   

9.
Phosphodiesterase 3A (PDE3A) selectively cleaves the phosphodiester bond of cAMP and is inhibited by cGMP, making it an important regulator of cAMP–cGMP signaling crosstalk in the pulmonary vasculature. In addition, the nitric oxide–cGMP axis is known to play an important role in maintaining endothelial barrier function. However, the potential role of protein kinase G-Iα (PKG-Iα) in this protective process is unresolved and was the focus of our study. We describe here a novel mechanism regulating PDE3A activity, which involves a PKG-Iα–dependent inhibitory phosphorylation of PDE3A at serine 654. We also show that this phosphorylation is critical for maintaining intracellular cAMP levels in the pulmonary endothelium and endothelial barrier integrity. In an animal model of acute lung injury (ALI) induced by challenging mice with lipopolysaccharide (LPS), an increase in PDE3 activity and a decrease in cAMP levels in lung tissue was associated with reduced PKG activity upon PKG-Iα nitration at tyrosine 247. The peroxynitrite scavenger manganese (III) tetrakis(1-methyl-4-pyridyl)porphyrin prevented this increase in PDE3 activity in LPS-exposed lungs. In addition, site-directed mutagenesis of PDE3A to replace serine 654 with alanine yielded a mutant protein that was insensitive to PKG-dependent regulation. Taken together, our data demonstrate a novel functional link between nitrosative stress induced by LPS during ALI and the downregulation of barrier-protective intracellular cAMP levels. Our data also provide new evidence that PKG-Iα is critical for endothelial barrier maintenance and that preservation of its catalytic activity may be efficacious in ALI therapy.  相似文献   

10.
cAMP is one of the most potent signaling molecules to stabilize the endothelial barrier, both under resting conditions as well as under challenge of barrier-destabilizing mediators. The two main signaling axes downstream of cAMP are activation of protein kinase A (PKA) as well as engagement of exchange protein directly activated by cAMP (Epac) and its effector GTPase Rap1. Interestingly, both pathways activate GTP exchange factors for Rac1, such as Tiam1 and Vav2 and stabilize the endothelial barrier via Rac1-mediated enforcement of adherens junctions and strengthening of the cortical actin cytoskeleton. On the level of Rac1, cAMP signaling converges with other barrier-enhancing signaling cues induced by sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang1) rendering Rac1 as an important signaling hub. Moreover, activation of Rap1 and inhibition of RhoA also contribute to barrier stabilization, emphasizing that regulation of small GTPases is a central mechanism in this context. The relevance of cAMP/Rac1-mediated barrier protection under pathophysiologic conditions can be concluded from data showing that inflammatory mediators causing multi-organ failure in systemic inflammation or sepsis interfere with this signaling axis on the level of cAMP or Rac1. This is in line with the well-known efficacy of cAMP to abrogate the barrier breakdown in response to most barrier-compromising stimuli. New is the notion that the tight endothelial barrier under resting conditions is maintained by (1) continuous cAMP formation induced by hormones such as epinephrine or (2) by activation of Rac1 downstream of S1P that is secreted by erythrocytes and activated platelets.  相似文献   

11.
12.
The vascular endothelium provides a semi-permeable barrier, which restricts the passage of fluid, macromolecules and cells to the surrounding tissues. Cyclic AMP promotes endothelial barrier function and protects the endothelium against pro-inflammatory mediators. This study analyzed the relative contribution of two cAMP targets, PKA and Epac1, to the control of endothelial barrier function and endothelial cell migration. Real-time recording of transendothelial electrical resistance showed that activation of either PKA or Epac1 with specific cAMP analogues increases endothelial barrier function and promotes endothelial cell migration. In addition, reduction of Epac1 expression showed that Epac1 and PKA control endothelial integrity and cell motility by two independent and complementary signaling pathways. We demonstrate that integrin-mediated adhesion is required for PKA, but not Epac1-Rap1-driven stimulation of endothelial barrier function. In contrast, both PKA- and Epac1-stimulated endothelial cell migration requires integrin function. These data show that activation of Epac1 and PKA by cAMP results in the stimulation of two parallel, independent signaling pathways that positively regulate endothelial integrity and cell migration, which is important for recovery after endothelial damage and for restoration of compromised endothelial barrier function.  相似文献   

13.
14.
Neutrophil accumulation in the lung plays a pivotal role in the pathogenesis of acute lung injury during sepsis. Directed movement of neutrophils is mediated by a group of chemoattractants, especially CXC chemokines. Local lung production of CXC chemokines is intensified during experimental sepsis induced by cecal ligation and puncture (CLP), as reflected by rising levels of MIP-2 and cytokine-induced neutrophil chemoattractant-1 in bronchoalveolar lavage fluids. Alveolar macrophages are primed and blood neutrophils are down-regulated for production of MIP-2 and cytokine-induced neutrophil chemoattractant production in response to LPS and C5a. Under these conditions of stimulation, activation of MAPKs (p38, p42/p44) occurs in sham neutrophils but not in CLP neutrophils, while under the same conditions phosphorylation of p38 and p42/p44 occurs in both sham and CLP alveolar macrophages. These data indicate that, under septic conditions, there is impaired signaling in neutrophils and enhanced signaling in alveolar macrophages, resulting in CXC chemokine production, and C5a appears to play a pivotal role in this process. As a result, CXC chemokines increase in lung, setting the stage for neutrophil accumulation in lung during sepsis.  相似文献   

15.
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.  相似文献   

16.
Prostaglandin E(2) plays a role in cytokine production presumably by altering intracellular levels of cAMP. In this paper, we report on the differential expression of cytokine genes in murine macrophages in response to stimulation with activators of cAMP. Macrophages were cultured with or without cAMP activators in the presence or absence of LPS. Prior to treatment, macrophages do not express interleukin-1beta, but do express low levels of tumour necrosis factor alpha and platelet-derived growth factor B chain mRNAs. After culture with cAMP-inducers, including PGE(2), dibutyryl cAMP and forskolin, PDGF B chain mRNA is induced. Forskolin, for example, induced expression PDGF B chain mRNA to a level ranging from 25% to 200% of the level induced by LPS in 6 h. In contrast, cAMP-inducers enhance the expression of IL-1beta and TNF-alpha mRNAs, but only in the presence of LPS. The combination of forskolin and LPS does not appear to act synergistically on PDGF B chain mRNA levels, suggesting that LPS-stimulated effects are not mediated through a cAMP-dependent pathway. Furthermore, macrophages differentially express cytokine genes in response to treatment with inducers of intracellular cAMP.  相似文献   

17.
18.
Transmembrane adenylyl cyclase (AC) generates a cAMP pool within the subplasma membrane compartment that strengthens the endothelial cell barrier. This cAMP signal is steered toward effectors that promote junctional integrity and is inactivated before it accesses microtubules, where the cAMP signal causes phosphorylation of tau, leading to microtubule disassembly and barrier disruption. During infection, Pseudomonas aeruginosa uses a type III secretion system to inject a soluble AC, ExoY, into the cytosol of pulmonary microvascular endothelial cells. ExoY generates a cAMP signal that disrupts the endothelial cell barrier. We tested the hypothesis that this ExoY-dependent cAMP signal causes phosphorylation of tau, without inducing phosphorylation of membrane effectors that strengthen endothelial barrier function. To approach this hypothesis, we first discerned the membrane compartment in which endogenous transmembrane AC6 resides. AC6 was resolved in caveolin-rich lipid raft fractions with calcium channel proteins and the cell adhesion molecules N-cadherin, E-cadherin, and activated leukocyte adhesion molecule. VE-cadherin was excluded from the caveolin-rich fractions and was detected in the bulk plasma membrane fractions. The actin binding protein, filamin A, was detected in all membrane fractions. Isoproterenol activation of ACs promoted filamin phosphorylation, whereas thrombin inhibition of AC6 reduced filamin phosphorylation within the membrane fraction. In contrast, ExoY produced a cAMP signal that did not cause filamin phosphorylation yet induced tau phosphorylation. Hence, our data indicate that cAMP signals are strictly compartmentalized; whereas cAMP emanating from transmembrane ACs activates barrier-enhancing targets, such as filamin, cAMP emanating from soluble ACs activates barrier-disrupting targets, such as tau.  相似文献   

19.
The loss of vascular integrity is a cardinal feature of acute inflammatory responses evoked by activation of the TLR4 inflammatory cascade. Utilizing in vitro and in vivo models of inflammatory lung injury, we explored TLR4-mediated dysregulated signaling that results in the loss of endothelial cell (EC) barrier integrity and vascular permeability, focusing on Dock1 and Elmo1 complexes that are intimately involved in regulation of Rac1 GTPase activity, a well recognized modulator of vascular integrity. Marked reductions in Dock1 and Elmo1 expression was observed in lung tissues (porcine, rat, mouse) exposed to TLR4 ligand-mediated acute inflammatory lung injury (LPS, eNAMPT) in combination with injurious mechanical ventilation. Lung tissue levels of Dock1 and Elmo1 were preserved in animals receiving an eNAMPT-neutralizing mAb in conjunction with highly significant decreases in alveolar edema and lung injury severity, consistent with Dock1/Elmo1 as pathologic TLR4 targets directly involved in inflammation-mediated loss of vascular barrier integrity. In vitro studies determined that pharmacologic inhibition of Dock1-mediated activation of Rac1 (TBOPP) significantly exacerbated TLR4 agonist-induced EC barrier dysfunction (LPS, eNAMPT) and attenuated increases in EC barrier integrity elicited by barrier-enhancing ligands of the S1P1 receptor (sphingosine-1-phosphate, Tysiponate). The EC barrier-disrupting influence of Dock1 inhibition on S1PR1 barrier regulation occurred in concert with: 1) suppressed formation of EC barrier-enhancing lamellipodia, 2) altered nmMLCK-mediated MLC2 phosphorylation, and 3) upregulation of NOX4 expression and increased ROS. These studies indicate that Dock1 is essential for maintaining EC junctional integrity and is a critical target in TLR4-mediated inflammatory lung injury.  相似文献   

20.
Lin NT  Yang FL  Lee RP  Peng TC  Chen HI 《Life sciences》2006,78(10):1038-1043
Nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), and interleukin 1-beta (IL-1beta) are postulated to play a key pathophysiologic role during sepsis. In this study, we examined the time course of inducible NO synthase (iNOS) mRNA expression and the plasma TNF-alpha and IL-1beta in lipopolysaccharide (LPS)-treated conscious rats. The hemodynamic pattern in septic shock is more similar to clinical conditions without anesthesia. The data showed that a significant increase in iNOS mRNA levels was found in the spleen, lung, liver, with slight elevation in the heart and kidney at 3 h after LPS administration. However, iNOS mRNA levels were not elevated significantly in all tissues examined at 24 h. In the plasma, TNF-alpha and IL-1beta culminated within 1 h, and reduced gradually to baseline levels in a relatively short period (within 9 h). The results suggest that local NO production by activation of iNOS mRNA expression and cytokine release may contribute to LPS-induced organ dysfunction at various time points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号