首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using water culture technique, some experiments have been performed to investigate the effect of 60 days salinization treatments (0.0–100 meq 1−1 NaCl) on dry weight and on the content of some nutrient elements (Na, K, Ca, Mg, P, N) in castor bean, sunflower and flax plants. In general the content of sodium increased progressively with the rise of salinity level. The relatively low and moderate salinization levels (20 and 40 meq I−1 NaCl) resulted in a promotion rather than inhibition of the dry weight and in the content of most of the investigated elements in the different organs of the test plants. However with the rise of salinization level from 60 to 100 meq l−1, the dry weight and the content of these nutrient elements were mostly reduced.  相似文献   

2.
Increasing salinity of growth medium induced a reduction in growth and transpiration rate. The concentrations of chlorophylls and carotenoids were increased in most cases in broad bean leaves while in pea plants they remained more or less unchanged with the rise of salinization up to 80mM NaCl. Thereabove a significant decrease in these contents was observed. A stimulation of the net photosynthetic rate of pea was observed at the lowest levels of NaCl but at the highest levels inhibitory effect was recorded. In broad bean all salinization levels inhibited photosynthetic activity, but dark respiration of both plant species was stimulated. The content of Na+ in the roots and shoots of both species increased at increasing salinity. In broad bean, Ca2+ concentration in shoots and K+ and Ca2+ contents of roots increased at increasing salinization, while in pea plants, the content of K+ and Ca2+ was almost unaffected by salinity. Salinity induced an increase in the content of these ions in pea roots. Mg2+ content in shoots and roots of both broad bean and pea decreased at increasing salinity except in roots of pea, where it was generally increased.  相似文献   

3.
Gas exchange and fluorescence measurements of attached leaves of water stressed bean, sunflower and maize plants were carried out at two light intensities (250 mol quanta m-2s-1 and 850 mol quanta m-2s-1). Besides the restriction of transpiration and CO2 uptake, the dissipation of excess light energy was clearly reflected in the light and dark reactions of photosynthesis under stress conditions. Bean and maize plants preferentially use non-photochemical quenching for light energy dissipation. In sunflower plants, excess light energy gave rise to photochemical quenching. Autoradiography of leaves after photosynthesis in 14CO2 demonstrated the occurrence of leaf patchiness in sunflower and maize but not in bean. The contribution of CO2 recycling within the leaves to energy dissipation was investigated by studies in 2.5% oxygen to suppress photorespiration. The participation of different energy dissipating mechanisms to quanta comsumption on agriculturally relevant species is discussed.Abbreviations Fo minimal fluorescence - Fm maximal fluorescence - Fp peak fluorescence - g leaf conductance - PN net CO2 uptake - qN coefficient of non-photochemical quenching - qP coefficient of photochemical quenching  相似文献   

4.
Abstract Maize, barley and sunflower plants were grown in the field, well supplied with water and nutrients. During growth, net CO2 exchange and transpiration of the crops at varying ambient CO2 concentrations and irradiance were determined by infra-red gas analysis. In maize the net photosynthetic rate (Pn) was linearly related to the irradiance (I) and independent of the ambient CO2 concentration (Ca). The transpiration rate (ET) was also linearly related to I but decreased strongly with increasing Ca. In sunflower and barley Pn increased and ET decreased with increasing Ca. A mean stomatal conductance and intercellular CO2 concentration (Ci) were calculated. In all three species the internal CO2 concentration was independent of the irradiance. In maize it was also independent of Ca, but in sunflower and barley Ci was proportional to Ca with a ratio of 0.6. It is concluded that differences in stomatal behaviour are only partly species-specific and depend mainly on growing conditions. The importance of stomatal regulation for crop growth under conditions of water shortage and CO2 depletion is discussed.  相似文献   

5.
Photosynthesis, transpiration, stomatal conductance and chlorophyll fluorescence characteristics were examined in kidney bean plants, with developing gradually water stress for several days after watering and then permitted to recover by re-watering. The photosynthetic rate, transpiration rate, and stomatal conductance decreased rapidly by withholding water for 2 days. The Fv/Fm of chlorophyll fluorescence characteristics slightly decreased when the water was withheld for 7 days. After re-watering the rate of recovery of photosynthesis, transpiration, and stomatal conductance decreased gradually as the days without watering became longer. The differences existed in rates of recovery of photosynthesis, transpiration, and stomatal conductance following drought stress. Among the fractional recoveries the highest was photosynthesis, and the lowest was stomatal conductance. Photosynthesis rate following drought stress was rapidly recovered until 2 days after re-watering, then recovered slowly. The critical time for the recovery of photosynthesis was recognized. The results show clearly a close correlation between the leaf water potential and the recovery level and speed of photosynthesis, transpiration, and stomatal conductance.  相似文献   

6.
Detached corn and sunflower leaves supplied with PbCl2 via the transpiration stream exhibited reduced rates of photosynthesis. The difference between species in the amount of Pb taken up was in direct proportion to their respective transpiration rates. For both species the reduction in photosynthesis and the amount of Pb taken up increased with increasing treatment concentrations. A corresponding reduction occurred in the rate of transpiration suggesting that stomatal resistance may be increased by Pb contamination. The pathways of CO2 and water vapor exchange are discussed in relation to the effects of Pb on photosynthesis and transpiration.  相似文献   

7.
Among grain legumes, faba bean is becoming increasingly popular in European agriculture due to recent economic and environmental interests. Faba bean can be a highly productive crop, but it is sensitive to drought stress and yields can vary considerably from season to season. Understanding the physiological basis of drought tolerance would indicate traits that can be used as indirect selection criteria for the development of cultivars adapted to drought conditions. To assess genotypic variation in physiological traits associated with drought tolerance in faba bean and to determine relationships among these attributes, two pot experiments were established in a growth chamber using genetic materials that had previously been screened for drought response in the field. Nine inbred lines of diverse genetic backgrounds were tested under adequate water supply and limited water conditions. The genotypes showed substantial variation in shoot dry matter, water use, stomatal conductance, leaf temperature, transpiration efficiency, carbon isotope discrimination (Δ13C), relative water content (RWC) and osmotic potential, determined at pre-flowering vegetative stage. Moisture deficits decreased water usage and consequently shoot dry matter production. RWC, osmotic potential, stomatal conductance and Δ13C were lower, whereas leaf temperature and transpiration efficiency were higher in stressed plants, probably due to restricted transpirational cooling induced by stomatal closure. Furthermore, differences in stomatal conductance, leaf temperature, Δ13C and transpiration efficiency characterized genotypes that were physiologically more adapted to water deficit conditions. Correlation analysis also showed relatively strong relationships among these variables under well watered conditions. The drought tolerant genotypes, ILB-938/2 and Melodie showed lower stomatal conductance associated with warmer leaves, whereas higher stomatal conductance and cooler leaves were observed in sensitive lines (332/2/91/015/1 and Aurora/1). The lower value of Δ13C coupled with higher transpiration efficiency in ILB-938/2, relative to sensitive lines (Aurora/1 and Condor/3), is indeed a desirable characteristic for water-limited environments. Finally, the results showed that stomatal conductance, leaf temperature and Δ13C are promising physiological indicators for drought tolerance in faba bean. These variables could be measured in pot-grown plants at adequate water supply and may serve as indirect selection criteria to pre-screen genotypes.  相似文献   

8.
Growth parameters (leaf area, length of shoot and root, water content and dry matter accumulation), contents of reducing sugars and saccharose as well as activities of α- and β-amylases of castor bean and maize seedlings and adult plants supplemented with 0.5 μg g?1 and 2.5 μg g?1 of metribuzin either alone or in combination with 50 μg g?1 NaCl, were increased significantly whereas at high concentrations (5 and 10 μg g?1) of herbicide, an opposite response was apparent. On the other hand, polysaccharide content and invertase activity of castor bean and maize seedlings and adult plants were significantly decreased in response to low concentrations (0.5 and 2.5 μg g?1) of metribuzin and increased significantly at high concentrations (5 and 10 μg g?1) of the herbicide either alone or in combination with 50 μg g?1 NaCl. Total carbohydrate contents of castor bean and maize seedlings and whole plants treated with herbicide either alone or in combination with NaCl did not change significantly. Growth parameters, carbohydrate fractions contents and activities of enzymes in both castor bean and maize seedlings and whole plants treated with herbicide alone were consistently higher than those values detected in plants treated with herbicide in combination with NaCl.  相似文献   

9.
In mature and young leaves of sunflower (Helianthus annuus L. cv. Catissol-01) plants grown in the greenhouse, photosynthetic rate, stomatal conductance, and transpiration rate declined during water stress independently of leaf age and recovered after 24-h rehydration. The intercellular CO2 concentration, chlorophyll (Chl) content, and photochemical activity were not affected by water stress. However, non-photochemical quenching increased in mature stressed leaves. Rehydration recovered the levels of non-photochemical quenching and increased the Fv/Fm in young leaves. Drought did not alter the total Chl content. However, the accumulation of proline under drought was dependent on leaf age: higher content of proline was found in young leaves. After 24 h of rehydration the content of proline returned to the same contents as in control plants.  相似文献   

10.
Leaf photosynthesis rate of the C4 species Paspalum plicatulum Michx was virtually CO2-saturated at normal atmospheric CO2 concentration but transpiration decreased as CO2 was increased above normal concentrations thereby increasing transpiration efficiency. To test whether this leaf response led growth to be CO2-sensitive when water supply was restricted, plants were grown in sealed pots of soil as miniature swards. Water was supplied either daily to maintain a constant water table, or at three growth restricting levels on a 5-day drying cycle. Plants were either in a cabinet with normal air (340 mol (CO2) mol-1 (air)) or with 250 mol mol-1 enrichment. Harvesting was by several cycles of defoliation.With abundant water supply high CO2 concentration did not cause increased growth, but it did not cause an increase in growth over a wide range of growth-limiting water supplies either. Only when water supply was less than 30–50% of the amount used by the stand with a water-table was there evidence that dry weight growth was enhanced by high CO2. In addition, with successive regrowth, the enhancing effect under a regime of minimal water allocations, became attenuated. Examination of leaf gas exchange, growth and water use data showed that in the long term stomatal conductance responses were of little significance in matching plant water use to low water allocation; regulation of leaf area was the mechanism through which consumption matched supply. Since high CO2 effects operate principally via stomatal conductance in C4 species, we postulate that for this species higher CO2 concentrations expected globally in future will not have much effect on long term growth.  相似文献   

11.
Detached corn and sunflower leaves exposed to various concentrations of Cd, supplied as CdCl2, exhibit reduced photosynthesis and transpiration. The reduction is dependent on the concentration of CdCl2 solution and generally becomes more pronounced with time. In sunflower, net photosynthesis and transpiration are completely inhibited within 45 min after the introduction of 18 mM Cd. Within two hours net photosynthesis is reduced to 40% and 70% of maximum after the introduction of 9 and 4.5 mM Cd respectively. In corn the trend of photo-synthetic response to Cd is similar to that in sunflower except that the inhibition in corn is more pronounced at all treatment levels. A strong linear relationship between photosynthesis and transpiration inhibition is obtained in both species suggesting that Cd contamination induces stomatal closure.  相似文献   

12.
Summary The relations between leaf conductance (gl) transpiration rate and root permeability to water (Rp) of three sunflower (Helianthus annuus L.) cultivars grown in a controlled environment cabinet are described.No differences in transpiration rates were found but it was shown that plants with low values of Rp have active stomatal closure with favourable consequences for water use efficiency under water limiting conditions.Rp was estimated by applying hydrostatic pressure on the root system. Values of Rp per unit root volume ranged from 0.34×10–5 to 16.75×10–5 (s MPa–1). There were significant inter-cultivar differences (P<0.05) in Rp and gl and an inverse correlation between Rp and the maximum values cf gl within cultivars.Pressure applied on the root system is proposed as a useful tool for the determination of differences in the root permeability to water amongst sunflower cultivars.  相似文献   

13.
This study was planned to enhance the growth and productivity of common bean plants (Phaseolus vulgaris L.) grown under different water stress level by using different microorganisms as bio-fertilizer agents. Water stress is a international problem that effects on morphological, functional and chemical processes of plants occasioning in altering growth, yield and water relations of economic plants like common bean plants. The interaction effect between water stress (WW as recommended irrigation after 6 days, WS1 after 12 days and WS2 after 18 days) and inoculation with different microorganisms [AMF (Glomus mosseae) and endophytic bacteria, (Bacillus amyloliquefaciens)] used alone or in mixed was examined on the development and productivity of common bean plants. Mutual application of AMF and endophytic bacteria significantly increased the average values of most of growth, water relations (photosynthetic rate, transpiration rate and stomatal conductance) and yield parameters of common bean plants grown at WS1 and WS2 comparing with non-colonized plants. In this connection, colonization with AMF and endophytic bacteria with WS1 are the greater pods number, pod length, pods weight, 100 seeds weight, Yield by ton /Fed and water-use efficiency (WUE) by ton/ m3 than other treatments. Common bean yielded seeds had significantly increased nutrients content (nitrogen, potassium, phosphorus, magnesium and calcium), vitamin B1, Folic acid, crude protein and crude fibers at AMF + endophytic bacteria under second water stress (WS1) when compared to other treatments.  相似文献   

14.
With the increasing global demand for food, fuel and fibre, the use of plant growth regulators in agriculture has become an agricultural practice aimed to improve physiological and productive responses. Our work aimed to evaluate the effect of tryptophol (Tol), a precursor of auxin, on common bean (Phaseolus vulgaris L.). The experiment was conducted in pots under greenhouse conditions, where we evaluated the Tol effect on bean crop under two different application forms: TSoil – soil application of Tol (4.10?4 mg L?1) and TLeaf – leaf tryptophol application (4.10?4 mg L?1), plus a reference treatment (0 mg L?1 of Tol). We analysed the variables: shoot fresh and dry matter; root dry matter, area and volume; leaf macro and micronutrients; CO2 net assimilation rate (A); stomatal conductance (gS); internal CO2 concentration (CI); foliar transpiration (E); photosynthetic pigment content and some crop production attributes. The application of Tol through the foliar pathway proved to be more advantageous because it improved the shoot fresh and dry matter, increased the root volume and area, favoured less foliar transpiration and improved the length of pods, while the application of Tol in soil induced higher nitrogen accumulation in leaves. Our observations allow the characterization of Tol as a bioactive metabolite, suggesting an important potential for use in agricultural systems.  相似文献   

15.
Chitosan (CHT) is a natural compound able to activate the plant own defence machinery against pathogen attacks and to reduce both transpiration and stomatal opening when applied as foliar spray. The data here reported show that CHT-induced antitranspirant activity in bean plants is mediated by ABA, whose level raised over threefold in treated leaves, 24 h after foliar spraying. This is thought to induce partial stomatal closure via a H2O2-mediated process, as confirmed by scanning electron microscopy (SEM) and histo-cytochemistry, and, in turn, a decrease of stomatal conductance to water vapor (Gw) and transpiration rate (E), assessed by gas exchange measurements. The relatively high internal CO2 concentration (Ci) values, suggest the occurrence of a slight decrease in carboxylation efficiency after CHT treatment, which however did not prevail over stomatal limitations. The intrinsic water use efficiency (WUEi) of CHT treated plants was not statistically different from controls and the maximal photochemical efficiency (Fv/Fm) of PSII was not affected. Moreover, CHT determined a stimulation of the xanthophyll cycle towards de-epoxidation state. On the whole, these results, besides confirming the effectiveness of CHT in reducing plant transpiration, prove that the mechanism underlying this activity differs from that showed by the commercial antitranspirant Vapor Gard® (VP). In fact, the efficacy of the latter is based on the formation of a thin antitranspirant film over the leaf and not on the reduction of stomatal opening. Finally, suggestions for possible use of the two antitranspirants in different environmental conditions are discussed.  相似文献   

16.
This study aimed to assess the accumulation of organic and inorganic solutes and their relative contribution to osmotic adjustment in roots and leaves of Jatropha curcas subjected to different water deficit intensity. Plants were grown in vermiculite 50% (control), 40%, 30%, 20% and 10% expressed in gravimetric water content. The water potential, osmotic potential and turgor potential of leaves decreased progressively in parallel to CO2 photosynthetic assimilation, transpiration and stomatal conductance, as the water deficit increased. However, the relative water content, succulence and water content in the leaves did not show differences between the control and stressed plants, indicating osmotic adjustment associated with an efficient mechanisms to prevent water loss by transpiration through stomatal closure. The K+ ions had greater quantitative participation in the osmotic adjustment in both leaves and roots followed by Na+ and Cl, while the NO3 ion only showed minor involvement. Of the organic solutes studied, the total soluble sugars showed the highest relative contribution to the osmotic adjustment in both organs and its concentration positively increased with more severe water deficit. The free amino acids and glycinebetaine also effectively contributed to the osmotic potential reduction of both the root and leaves. The role of proline was quantitatively insignificant in terms of osmotic adjustment, in both the control and stressed roots and leaves. Our data reveal that roots and leaves of J. curcas young plants display osmotic adjustment in response to drought stress linked with mechanisms to prevent water loss by transpiration by means of the participation of inorganic and organic solutes and stomatal closure. Of all the solutes studied, soluble sugars uniquely display a prominent drought-induced synthesis and/or accumulation in both roots and leaves.  相似文献   

17.
Young bell pepper (Capsicum annuum L.) plants grown in nutrient solution were gradually acclimated to 50, 100, or 150 moles per cubic meter NaCl, and photosynthetic rates of individual attached leaves were measured on several occasions during the salinization period at external CO2 concentrations ranging from approximately 70 to 1900 micromoles per mole air. Net CO2 assimilation (A) was plotted against computed leaf internal CO2 concentration (Ci), and the initial slope of this A-Ci curve was used as a measure of photosynthetic ability. During the 10 to 14 days after salinization began, leaves from plants exposed to 50 moles per cubic meter NaCl showed little change in photosynthetic ability, whereas those treated to 100 or 150 moles per cubic meter NaCl had up to 85% inhibition, with increase in CO2 compensation point. Leaves appeared healthy, and leaf chlorophyll content showed only a 14% reduction at the highest salinity levels. Partial stomatal closure occurred with salinization, but reductions in photosynthesis were primarily nonstomatal in origin. Photosynthetic ability was inversely related to the concentration of either Na+ or Cl in the leaf laminas sampled at the end of the experimental period. However, the concentration of Cl expressed on a tissue water basis was greater, exceeding 300 moles per cubic meter, and Cl was more closely associated (R2 = 0.926) with the inhibition of photosynthetic ability. Leaf turgor was not reduced by salinization and leaf osmotic potential decreased to a slightly greater extent than the osmotic potential decreases of the nutrient solutions. Concentration of accumulated Na+ and Cl (on a tissue water basis) accounted quantitatively for maintenance of leaf osmotic balance, assuming that these ions were sequestered in the vacuoles.  相似文献   

18.
To assess whether foliar application of K+S as potassium sulfate (K2SO4) could alleviate the adverse effects of salt on sunflower (Helianthus annuus L. cv. SF-187) plants, a greenhouse experiment was conducted. There were two NaCl levels (0 and 150 mM) applied to the growth medium and six levels of K+S as K2SO4 (NS (no spray), WS (spray of water+0.1% Tween 20 solution), 0.5% K+0.21% S, 1.0% K+0.41% S, 1.5% K+0.62% S, and 2.0% K+0.82% S in 0.1% Tween-20 solution) applied two times foliarly to non-stressed and salt-stressed sunflower plants. Salt stress markedly repressed the growth, yield, photosynthetic pigments, water relations and photosynthetic attributes, quantum yield (Fv/Fm), leaf and root K+, Mg2+, P, Ca2+, N as well as K+/Na+ ratios, while it enhanced the cell membrane permeability, and leaf and root Na+ and Cl concentrations. Foliar application of potassium sulfate significantly improved growth, achene yield, photosynthetic and transpiration rates, stomatal conductance, water use efficiency, leaf turgor and enhanced shoot and leaf K+ of the salt-stressed sunflower plants, but it did not improve leaf and root Na+, Cl, Mg2+, P, Ca2+, N as well as K+/Na+ ratios. The most effective dose of K+S for improving growth and achene yield was found to be 1.5% K+0.62% S and 1% K+0.41% S, respectively. Improvement in growth of sunflower plants due to exogenously applied K2SO4 was found to be linked to enhanced photosynthetic capacity, water use efficiency, leaf turgor and relative water content.  相似文献   

19.
The interactive effects of certain phytohormones (GA3, IAA or kinetin) and drought on plant-water relations and mineral accumulation of the three crop plants; maize, cowpea and broad bean, were studied. Phytohormone applications were capable of counteracting to some extent, the adverse effects of drought on transpiration, stomatal frequency, and leaf area. Part 1.  相似文献   

20.
Oil bodies (OBs) are the intracellular particles derived from oilseeds. These OBs store lipids as a carbon resource, and have been exploited for a variety of industrial applications including biofuels. Oleosin and caleosin are the common OB structural proteins which are enabling biotechnological enhancement of oil content and OB-based pharmaceutical formations via stabilizing OBs. Although the draft whole genome sequence information for Ricinus communis L. (castor bean) and Linum usitatissimum L. (flax), important oil seed plants, is available in public database, OB-structural proteins in these plants are poorly indentified. Therefore, in this study, we performed a comprehensive bioinformatic analysis including analysis of the genome sequence, conserved domains and phylogenetic relationships to identify OB structural proteins in castor bean and flax genomes. Using comprehensive analysis, we have identified 6 and 15 OB-structural proteins from castor bean and flax, respectively. A complete overview of this gene family in castor bean and flax is presented, including the gene structures, phylogeny and conserved motifs, resulting in the presence of central hydrophobic regions with proline knot motif, providing an evolutionary proof that this central hydrophobic region had evolved from duplications in the primitive eukaryotes. In addition, expression analysis of L-oleosin and caleosin genes using quantitative real-time PCR demonstrated that seed contained their maximum expression, except that RcCLO-1 expressed maximum in cotyledon. Thus, our comparative genomics analysis of oleosin and caleosin genes and their putatively encoded proteins in two non-model plant species provides insights into the prospective usage of gene resources for improving OB-stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号