首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Signals of translation initiation of operons of Haemophilus influenzae ribosomal proteins were predicted. This process is regulated by the formation of secondary RNA structures to which one of the proteins encoded in a particular operon binds. In some cases, these structures imitate the region of protein binding to rRNA. Predictions are made by comparing with homologous operons of Escherichia coli and analogous regions of rRNA and by estimating the energy of secondary structure formation. It is shown that this regulatory mechanism occurs: in operons L11, S10, S15, spc, and alpha of H.influenzae and, probably, in operon S15 of Helicobacter pylori, Bacillus subtilis, and Mycoplasma genitalium.  相似文献   

4.
5.
6.
We have used a hidden Markov model (HMM) to identify the consensus sequence of the RpoD promoters in the genome of Campylobacter jejuni. The identified promoter consensus sequence is unusual compared to other bacteria, in that the region upstream of the TATA-box does not contain a conserved -35 region, but shows a very strong periodic variation in the AT-content and semi-conserved T-stretches, with a period of 10-11 nucleotides. The TATA-box is in some, but not all cases, preceded by a TGx, similar to an extended -10 promoter.We predicted a total of 764 presumed RpoD promoters in the C.jejuni genome, of which 654 were located upstream of annotated genes. A similar promoter was identified in Helicobacter pylori, a close phylogenetic relative of Campylobacter, but not in Escherichia coli, Vibrio cholerae, or six other Proteobacterial genomes, or in Staphylococcus aureus. We used upstream regions of high confidence genes as training data (n=529, for the C.jejuni genome). We found it necessary to limit the training set to genes that are preceded by an intergenic region of >100bp or by a gene oriented in the opposite direction to be able to identify a conserved sequence motif, and ended up with a training set of 175 genes. This leads to the conclusion that the remaining genes (354) are more rarely preceded by a (RpoD) promoter, and consequently that operon structure may be more widespread in C.jejuni than has been assumed by others.Structural predictions of the regions upstream of the TATA-box indicates a region of highly curved DNA, and we assume that this facilitates the wrapping of the DNA around the RNA polymerase holoenzyme, and offsets the absence of a conserved -35 binding motif.  相似文献   

7.
S. coelicolor A3(2) contains six ribosomal RNA operons. Here we describe the cloning of rrnA, rrnC and rrnE, thereby completing the cloning of all operons. Southern hybridisation of genomic DNA with a heterologous probe from the E.coli rrnB 16S rRNA gene showed differences in hybridisation among the six rRNA operon-containing bands. The nucleotide sequence of the 16S rRNA gene and the upstream region of rrnA was determined and compared with the corresponding sequence of rrnD, showing that the 16S rRNA genes are 99% identical. Substantial differences were found, however, in the upstream regions corresponding to the P1 and P2 promoters of rrnD. Southern analysis showed that some of the other rRNA operons of S.coelicolor A3(2) also differed in this part of the upstream region.  相似文献   

8.
Genes for human U4 small nuclear RNA   总被引:10,自引:0,他引:10  
  相似文献   

9.
10.
11.
12.
Tandem promoters direct E. coli ribosomal RNA synthesis.   总被引:46,自引:0,他引:46  
R A Young  J A Steitz 《Cell》1979,17(1):225-234
  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Phytoplasmas are cell-wallless Gram-positive low G + C bacteria belonging to the Mollicutes that inhabit the cytoplasm of plants and insects. Although phytoplasmas possess two ribosomal RNA (rrn) operons, only one has been fully sequenced. Here, we determined the complete nucleotide sequence of both rrn operons (designated rrnA and rrnB) of onion yellows (OY) phytoplasma. Both operons have rRNA genes organized as 5'-16S-23S-5S-3' with very highly conserved sequences; the 16S, 23S, and 5S rRNA genes are 99.9, 99.8, and 99.1% identical between the two operons. However, the organization of tRNA genes in the upstream region from 16S rRNA gene and in the downstream region from 5S rRNA gene differs markedly. Several promoter candidates were detected upstream from both operons, which suggests that both operons are functional. Interestingly, both have a tRNA(Ile) gene in the 16S-23S spacer region, while the reported rrnB operon of loofah witches' broom phytoplasma does not, indicating heterogenous gene organization of rrnB within phytoplasmas. The phytoplasma tRNA gene organization is similar to that of acholeplasmas, a closely related mollicute, and different from that of mycoplasmas, another mollicute. Moreover, the organization suggests that the rrn operons were derived from that of a related nonmollicute bacterium, Bacillus subtilis. This data should shed light on the evolutionary relationships and phylogeny of the mollicutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号