首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 Arbuscular mycorrhizal fungi (AMF) living symbiotically with host plants enhance plant growth by improving the acquisition of mineral nutrients and water relations. This study determined the effects of AMF inoculation on growth, benefit/cost and water-use efficiency (grams dry matter produced per kilogram water evapotranspired) in two durum wheat genotypes (drought sensitive and drought tolerant) under water-stressed and well-watered conditions. Plants were grown in a low-P silty clay (Typic Xerochrept) soil mix in a greenhouse. Shoot and root dry matter (DM) and root AMF colonization were higher for well-watered than for water-stressed plants. The mycorrhizal plants were more water-use efficient than nonmycorrhizal plants. Shoot DM differences between mycorrhizal and nonmycorrhizal plants represent the benefit derived by plants from AMF-root associations. Shoot DM differences between mycorrhizal and nonmycorrhizal plants under similar conditions of water treatment represent the cost to the plant of AMF-root associations. Values of benefit/cost for AMF-root associations were highest when plants were water-stressed and decreased under well-watered conditions. Genotypic differences in calculated costs and benefits were pronounced. Benefit/cost analysis may be helpful in evaluating host plant genotypes in order to optimize efficiencies of AMF symbiosis under different environmental conditions. Accepted: 4 April 1998  相似文献   

2.
Sorghum [Sorghum bicolor (L.) Moench] was grown in a greenhouse in a low P (3.6 mg kg-1) soil (Typic Argiudolls) inoculated with the vesicular-arbuscular mycorrhizal fungi (VMAF) Glomus fasciculatum and P added at 0, 12.5, 25.0, and 37.5 mg kg-1 soil to determine the effects of VAMF-root associations on plant growth, benefit and cost analysis, and P efficiency (dry matter produced/unit P absorbed). Root colonization with VAMF and shoot growth enhancements decreased with increased soil P applications. Mycorrhizal plants were less P efficient than nonmycorrhizal plants. Shoot dry matter differences between mycorrhizal and nonmycorrhizal plants were considered the benefit derived by plants from VAMF-root associations. Shoot dry matter differences between mycorrhizal and nonmycorrhizal plants with similar P concentrations were considered the costs paid by plants for VAMF-root associations. Values of benefit and cost analysis for VAMF-root associations were highest when soil P was lowest and decreased with increasing P applications. Genotypic differences for calculated costs were pronounced, but not benefits. Benefit and cost analysis.may be helpful to evaluate host plant genotypes and VAMF species to optimize efficiencies of VAMF symbiosis in different soil environments.  相似文献   

3.
Many studies have scrutinized the nutritional benefits of arbuscular mycorrhizal associations to their host plants, while the carbon (C) balance of the symbiosis has often been neglected. Here, we present quantification of both the C costs and the phosphorus (P) uptake benefits of mycorrhizal association between barrel medic (Medicago truncatula) and three arbuscular mycorrhizal fungal species, namely Glomus intraradices, Glomus claroideum, and Gigaspora margarita. Plant growth, P uptake and C allocation were assessed 7 weeks after sowing by comparing inoculated plants with their non-mycorrhizal counterparts, supplemented with different amounts of P. Isotope tracing (33P and 13C) was used to quantify both the mycorrhizal benefits and the costs, respectively. G. intraradices supported greatest plant P acquisition and incurred high C costs, which lead to similar plant growth benefits as inoculation with G. claroideum, which was less efficient in supporting plant P acquisition, but also required less C. G. margarita imposed large C requirement on the host plant and provided negligible P uptake benefits. However, it did not significantly reduce plant growth due to sink strength stimulation of plant photosynthesis. A simple experimental system such as the one established here should allow quantification of mycorrhizal costs and benefits routinely on a large number of experimental units. This is necessary for rapid progress in assessment of C fluxes between the plants and different mycorrhizal fungi or fungal communities, and for understanding the dynamics between mutualism and parasitism in mycorrhizal symbioses.  相似文献   

4.
We examined the mycorrhizal type of 128 plant species in two patches of native vegetation of the Chaco Serrano Woodland, central Argentina, the largest dry forest area in South America. Of the 128 plant species investigated (belonging to 111 genera in 53 families), 114 were colonized by arbuscular mycorrhizal fungi (AM), orchid mycorrhizal associations were present in the five terrestrial orchid species analyzed, one ectomycorrhiza was only present in Salix humboldtiana Willd., and 96 harbored a dark septate endophyte (DSE) association. Co-occurrence of AM and DSE was observed in 88 plant species. We determine morphological types of arbuscular mycorrhizal fungi (Arum, Paris, and intermediate AM structures) and report the mycorrhizal status in 106 new species, 12 of which are endemic to central Argentina and two, Aa achalensis Schltr. and Buddleja cordobensis Griseb., are declared to be vulnerable species. Root colonization in the Chaco Serrano Woodland is widespread and should be considered in revegetation programs due to the deterioration of this particular ecosystem. Considering the predominance of AM and DSE associations and the various potential benefits that these associations may bring to plant establishment, they should receive special attention in conservation and reforestation of these woodlands.  相似文献   

5.
In natural systems, organisms are simultaneously engaged in mutualistic, competitive, and predatory interactions. Theory predicts that species persistence and community stability are feasible when the beneficial effects of mutualisms are balanced by density-dependent negative feedbacks. Enemy-mediated negative feedbacks can foster plant species coexistence in diverse communities, but empirical evidence remains mixed. Disparity between theoretical expectations and empirical results may arise from the effects of mutualistic mycorrhizal fungi. Here, we build a multiprey species/predator model combined with a bidirectional resource exchange system, which simulates mutualistic interactions between plants and fungi. To reach population persistence, (1) the per capita rate of increase of all plant population must exceed the sum of the negative per capita effects of predation, interspecific competition, and costs of mycorrhizal association, and (2) the per capita numerical response of enemies to mycorrhizal plants must exceed the magnitude of the per capita enemy rate of mortality. These conditions reflect the balance between regulation and facilitation in the system. Interactions between plant natural enemies and mycorrhizal fungi lead to shifts in the strength and direction of net mycorrhizal effects on plants over time, with common plant species deriving greater benefits from mycorrhizal associations than rare plant species.  相似文献   

6.
The specificity of orchids for their fungi can vary substantially, from highly specialist interactions to more generalist interactions, but little is known about the evolutionary history of the mycorrhizal specificity of orchids. Here, we used a network analysis approach to investigate orchid mycorrhizal associations in 16 species of the genus Orchis sampled across 11 different regions in Europe. We first examined in detail the structure of the network of associations and then tested for a phylogenetic signal in mycorrhizal specificity and identified the fungi with which the orchids associated. We found 20 different fungal lineages that associated with species of the genus Orchis, most of them being related to members of the Tulasnellaceae (84.33% of all identified associations) and a smaller proportion being related to members of the Ceratobasidiaceae (9.97%). Species associations formed a nested network that is built on asymmetric links among species. Evolution of mycorrhizal specificity in Orchis closely resembles a Brownian motion process, and the interaction between Orchis and Tulasnellaceae fungi is significantly influenced by the phylogenetic relationships between the Orchis species. Our results provide evidence of the presence of phylogenetic conservatism in mycorrhizal specificity in orchids and demonstrate that evolutionary processes may be an important factor in generating patterns of mycorrhizal associations.  相似文献   

7.
Mycorrhizal associations are recognized as key symbioses in a changing world, yet our understanding of their geographic distribution and temporal dynamics remains limited. We combined data on mycorrhizal associations and historical dominant vegetation to map the pre-European Settlement mycorrhizal associations of the conterminous United States of America (USA). As a demonstration of the map's utility, we estimated changes in mycorrhizal associations due to urbanization, agriculture and the establishment of non-native species in two regions. We found that the conterminous USA was dominated by vegetation associated with arbuscular mycorrhizas, but that ∼40% of vegetation types included multiple mycorrhizal associations. Shifting land use to agriculture and the introduction of non-native species has disproportionately affected ectomycorrhizas, as did urbanization. These preliminary results set a baseline for mycorrhizal biogeography of the USA and illustrate how synthesis of available data can help us understand the impact of anthropogenic changes on an important mutualism.  相似文献   

8.
Diversity and classification of mycorrhizal associations   总被引:1,自引:0,他引:1  
Most mycorrhizas are 'balanced' mutualistic associations in which the fungus and plant exchange commodities required for their growth and survival. Myco-heterotrophic plants have 'exploitative' mycorrhizas where transfer processes apparently benefit only plants. Exploitative associations are symbiotic (in the broad sense), but are not mutualistic. A new definition of mycorrhizas that encompasses all types of these associations while excluding other plant-fungus interactions is provided. This definition recognises the importance of nutrient transfer at an interface resulting from synchronised plant-fungus development. The diversity of interactions between mycorrhizal fungi and plants is considered. Mycorrhizal fungi also function as endophytes, necrotrophs and antagonists of host or non-host plants, with roles that vary during the lifespan of their associations. It is recommended that mycorrhizal associations are defined and classified primarily by anatomical criteria regulated by the host plant. A revised classification scheme for types and categories of mycorrhizal associations defined by these criteria is proposed. The main categories of vesicular-arbuscular mycorrhizal associations (VAM) are 'linear' or 'coiling', and of ectomycorrhizal associations (ECM) are 'epidermal' or 'cortical'. Subcategories of coiling VAM and epidermal ECM occur in certain host plants. Fungus-controlled features result in 'morphotypes' within categories of VAM and ECM. Arbutoid and monotropoid associations should be considered subcategories of epidermal ECM and ectendomycorrhizas should be relegated to an ECM morphotype. Both arbuscules and vesicles define mycorrhizas formed by glomeromycotan fungi. A new classification scheme for categories, subcategories and morphotypes of mycorrhizal associations is provided.  相似文献   

9.
Biological costs and benefits to plant-microbe interactions in the rhizosphere   总被引:16,自引:0,他引:16  
This review looks briefly at plants and their rhizosphere microbes, the chemical communications that exist, and the biological processes they sustain. Primarily it is the loss of carbon compounds from roots that drives the development of enhanced microbial populations in the rhizosphere when compared with the bulk soil, or that sustains specific mycorrhizal or legume associations. The benefits to the plant from this carbon loss are discussed. Overall the general rhizosphere effect could help the plant by maintaining the recycling of nutrients, through the production of hormones, helping to provide resistance to microbial diseases and to aid tolerance to toxic compounds. When plants lack essential mineral elements such as P or N, symbiotic relationships can be beneficial and promote plant growth. However, this benefit may be lost in well-fertilized (agricultural) soils where nutrients are readily available to plants and symbionts reduce growth. Since these rhizosphere associations are commonplace and offer key benefits to plants, these interactions would appear to be essential to their overall success.  相似文献   

10.
Mycorrhiza in sedges—an overview   总被引:12,自引:0,他引:12  
Most terrestrial plants associate with root-colonising mycorrhizal fungi, which improve the fitness of both the fungal and plant associates. However, exceptions exist both between and within plant families failing to associate with mycorrhizal fungi or in the incidence and the extent of mycotrophy, which may vary greatly. Sedges are important pioneers of disturbed habitats and often dominate vegetations like wetlands, and arctic and alpine vegetations, in which the mycorrhizal inoculum in the soil is often low or absent. In the past, sedges were often designated as non-mycorrhizal, though limited reports indicated the presence of mycorrhiza in certain species. However, studies since 1987 indicate widespread occurrence of mycorrhiza in sedges. Based on these studies, the family Cyperaceae is no longer a non-mycorrhizal family, but the mycorrhizal status of its members is greatly influenced by environmental conditions. Further, sedges appear to have several morphological adaptations to thrive in the absence of mycorrhizal association. Though mycorrhizal associations have been noted in many sedge species, the ecological role of this association is not well documented and no clear generalisation can be drawn. Similarly, the role of mycorrhizal fungi on sedge growth and nutrient uptake or non-nutritional benefits has yet to be fully ascertained. This paper reviews the current information available on the incidence of mycorrhiza in sedges and the possible reasons for low mycotrophy observed in this family.  相似文献   

11.
菌根真菌多样性与植物多样性的相互作用研究进展   总被引:3,自引:3,他引:0  
菌根共生双方多样性影响着生态系统的过程与功能。菌根真菌-寄主植物之间的共生组合存在偏好性或特异性,这导致菌根真菌对寄主植物的效益差异和寄主植物对菌根真菌的利益差别:两者在互利共生过程中不仅相互选择,还存在相互促进与制约的关系(如互补与选择效应、竞争),从而在一定程度上决定生态系统的演化与发展。本文概述了植物多样性与菌根真菌多样性的相互影响,探讨了两者互作可能存在的调控因素与机制,对存在的问题和争议进行了总结,并提出了进一步研究的方向。深入阐明植物多样性与菌根真菌多样性之间的互作关系,将丰富生物共生学理论,增强菌根应用潜力及生物多样性的维持。  相似文献   

12.
The nutritional benefits that mycorrhizal associations provide to plants may be constrained by acidic soil conditions resulting in decreased photosynthetic function. Sugar maple (Acer saccharum) and red maple (Acer rubrum) seedlings were grown on a native acidic (pH 4.1) soil both unamended and amended with base cations (pH 6.2). In a second study a fungicide treatment was included. Foliar nutrition, mycorrhizal colonization, photosynthesis and their relationships were assessed. On the native soil, red maple maintained higher levels of mycorrhizal colonization and photosynthesis than sugar maple but showed little response to base cation amendments. Mycorrhizal colonization and photosynthesis of sugar maple increased significantly in response to base cation amendments. Correlations were observed among mycorrhizal colonization, foliar nutrition and photosynthesis. The fungicide treatment indicated that 50% of the base cation-induced increase in sugar maple photosynthesis was mycorrhiza related. The results suggest that base cation stimulation of mycorrhization and photosynthesis of sugar maple on acid soils are coupled by foliar nutrient dynamics. Red maple exhibits much less sensitivity to these same edaphic conditions.  相似文献   

13.
Inoculation may influence mycorrhizal colonization and provide benefits to plants in restoration projects. However, it is unclear whether inoculation has consistent effects across ecosystem types, if it has long‐term effects on colonization, and whether sources of inocula differ in their effectiveness. To address these issues, we performed a meta‐analysis of published restoration studies across a variety of ecosystems to examine the effects of mycorrhizal inoculation on mycorrhizal establishment and plant growth under field conditions. Although we included trials from a variety of geographic locations, disturbance types, and ecosystem types, the majority were based in temperate ecosystems in the Northern Hemisphere, and fewer trials were from tropical ecosystems. Across ecosystem types, we found that inoculation consistently increased the abundance of mycorrhizal fungi in degraded ecosystems, and thus improved the establishment of plants. These benefits did not significantly attenuate over time. Moreover, inocula from different sources varied in their effects on mycorrhizal colonization. Inocula sourced from reference ecosystems and inocula with specific fungal species yielded higher increases in mycorrhizal colonization than did inocula from commercial sources. These results suggest that inocula source matters, and that an initial investment into mycorrhizal inoculation could provide lasting benefits for facilitating the establishment of the below‐ and aboveground components of restored ecosystems.  相似文献   

14.
Fruiting body guided sequence analysis of mycorrhizal root-tip mycelia is a powerful yet relatively sparsely explored method for species-level identification of mycorrhizal fungi. It is used in this study to indicate mycorrhizal associations in the corticioid (resupinate) genus Sistotrema of the cantharelloid clade through phylogenetic analysis of the ITS and nuLSU rDNA regions of two spatiotemporally co-occurring Sistotrema fruiting bodies and ectomycorrhizal root tips. The genus Sistotrema is confirmed to be polyphyletic, and the mycorrhizal species form a strongly supported monophyletic clade together with the stipitate genus Hydnum. The remaining lineages of Sistotrema may well be saprotrophic, the nutritional mode traditionally attributed to the genus, but the phylogenetic analyses show that they should be excluded from Sistotrema. The cantharelloid clade contains several mycorrhizal genera, but no symbiotic associations have previously been demonstrated for Sistotrema.  相似文献   

15.
Ayling  S. M.  Smith  S. E.  Smith  F. A.  Kolesik  P. 《Plant and Soil》1997,196(2):305-310
The roots of most plants form symbiotic associations with mycorrhizal fungi. The net flux of nutrients, particularly phosphorus (P), from the soil into the plant is greater in mycorrhizal than in comparable non-mycorrhizal plants. However despite the widespread occurrence of mycorrhizal associations the processes controlling the transfer of solutes between the symbionts are poorly understood. To understand the mechanisms regulating the transfer of solutes information about conditions at the interface between plant and fungus is needed.Measurements of apoplastic and intracellular electrical potential difference in leek roots colonised by mycorrhizal fungi and estimates of cytosolic pH in fungal hyphae are presented. These and the implications for plant/fungal mineral nutrition in vesicular-arbuscular mycorrhizas are discussed.  相似文献   

16.
Dark septate endophytes – are they mycorrhizal?   总被引:15,自引:7,他引:8  
Ari Jumpponen 《Mycorrhiza》2001,11(4):207-211
Dark septate endophytes (DSE) are a miscellaneous group of ascomycetous anamorphic fungi that colonize root tissues intracellularly and intercellularly. The limited selection of studies quoted here exemplifies the range of host responses to symbiotic DSE fungi. Like mycorrhizal associations, DSE associations vary from negative to neutral and positive when measured by host performance or host tissue nutrient concentrations. This range of host responses is partially attributable to variation between different fungus taxa and strains. Similarly, hosts differ in their responses to a single DSE strain. Experimental conditions may also govern the nature of the symbiotic association. It is concluded that DSE are capable of forming mutualistic associations functionally similar to mycorrhizas. If the variation in host response to mycorrhizal fungi is considered to represent a continuum ranging from parasitism to mutualism, DSE symbiosis must be considered mycorrhizal, at least under some conditions.  相似文献   

17.
Most orchid species rely on mycorrhizae to complete their life cycle. Despite a growing body of literature identifying orchid mycorrhizal associations, the nature and specificity of the association between orchid species and mycorrhizal fungi remains largely an open question. Nonetheless, better insights into these obligate plant–fungus associations are indispensable for understanding the biology and conservation of orchid populations. To investigate orchid mycorrhizal associations in five species of the genus Orchis (O. anthropophora, O. mascula, O. militaris, O. purpurea, and O. simia), we developed internal transcribed spacer‐based DNA arrays from extensive clone library sequence data sets, enabling rapid and simultaneous detection of a wide range of basidiomycetous mycorrhizal fungi. A low degree of specificity was observed, with two orchid species associating with nine different fungal partners. Phylogenetic analysis revealed that the majority of Orchis mycorrhizal fungi are members of the Tulasnellaceae, but in some plants, members of the Thelephoraceae, Cortinariaceae and Ceratobasidiaceae were also found. In all species except one (O. mascula), individual plants associated with more than one fungus simultaneously, and in some cases, associations with ≥3 mycorrhizal fungi at the same time were identified. Nestedness analysis showed that orchid mycorrhizal associations were significantly nested, suggesting asymmetric specialization and a dense core of interactions created by symmetric interactions between generalist species. Our results add support to the growing literature that multiple associations may be common among orchids. Low specificity or preference for a widespread fungal symbiont may partly explain the wide distribution of the investigated species.  相似文献   

18.
? Nonrandom species-species associations may arise from a range of factors, including localized dispersal, intra- and interspecific interactions and heterogeneous environmental conditions. Because seed germination and establishment in orchids are critically dependent upon the availability of suitable mycorrhizal fungi, species-species associations in orchids may reflect associations with mycorrhizal fungi. ? To test this hypothesis, we examined spatial association patterns, mycorrhizal associations and germination success in a hybrid zone containing three species of the genus Orchis (Orchis anthropophora, Orchis militaris and Orchis purpurea). ? Hybridization occurred predominantly between O. purpurea and O. militaris. The spatial distribution patterns of most pure species and hybrids were independent from each other, except that of O. purpurea and its hybrids. The fungal community composition of established individuals differed significantly between pure species, but not between hybrids and O. purpurea. Seed germination experiments using pure seeds showed that the highest number of protocorms were found in regions where adult individuals were most abundant. In the case of hybrid seeds, germination was restricted to areas where the mother plant was most abundant. ? Overall, these results suggest that the observed nonrandom spatial distribution of both pure and hybrid plants is dependent on the contingencies of the spatial distribution of suitable mycorrhizal fungi.  相似文献   

19.
Mycoheterotrophic species have abandoned an autotrophic lifestyle and obtain carbon exclusively from mycorrhizal fungi. Although these species have evolved independently in many plant families, such events have occurred most often in the Orchidaceae, resulting in the highest concentration of these species in the tracheophytes. Studies of mycoheterotrophic species' mycobionts have generally revealed extreme levels of mycorrhizal specialization, suggesting that this system is ideal for studying the evolution of mycorrhizal associations. However, these studies have often investigated single or few, often unrelated, species without consideration of their phylogenetic relationships. Herein, we present the first investigation of the mycorrhizal associates of all species of a well-characterized orchid genus comprised exclusively of mycoheterotrophic species. With the employment of molecular phylogenetic methods, we identify the fungal associates of each of nine Hexalectris species from 134 individuals and 42 populations. We report that Hexalectris warnockii associates exclusively with members of the Thelephoraceae, H. brevicaulis and H. grandiflora associate with members of the Russulaceae and Sebacinaceae subgroup A, while each member of the H. spicata species complex associates primarily with unique sets of Sebacinaceae subgroup A clades. These results are consistent with other studies of mycorrhizal specificity within mycoheterotrophic plants in that they suggest strong selection within divergent lineages for unique associations with narrow clades of mycorrhizal fungi. Our results also suggest that mycorrhizal associations are a rapidly evolving characteristic in the H. spicata complex.  相似文献   

20.
Summary The mycorrhizal associations of Rhododendron maximum in the southern Appalachian mountains were studied in relation to the supply and demand of phosphate at three altitudes. A variety of mycorrhizal associations are described together with the ability of the differing mycorrhizal types to produce phosphatase enzyme, which was inversely related to the availability of inorganic phosphate determined by a root bioassay, as Ectomycorrhizal associations were shown to have a higher phosphatase production potential than other mycorrhizas. The availability of inorganic phosphate at different altitudes is related to turnover of organic matter and fixation capacity of the mineral soil. It is speculated that the ability of R. maximum to associate with a range of mycorrhizal associates is likely to improve species' fitness and enhance its competitive ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号