首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stornata of leaves of non-stressed yellow lupin plants wereclosed with phenylmercuric acetate (PMA) and viscous flow resistanceand apparent diffusive resistance were measured for both leafsurfaces. Viscous flow resistance was proportional to the ythpower of apparent diffusive resistance with y = 1.19 ±0.10 for the upper surface and y = 1.58 ± 0.11 for thelower surface, i.e. viscous flow resistance changed faster thanapparent diffusive resistance. However, in three separate experiments where lupin plants werewatered with 10–4 M abscisic acid (ABA) for 1 week, they values were between 0.29 and 0.59 for the upper surface andbetween 0.18 and 1.00 for the lower surface. Similarly, drought-hardened plants showed y values between 0.45and 0.52 for the upper surface, and between 0.43 and 0.88 forthe lower surface. Both ABA. and drought-induced changes iny values were statistically different from PMA results at the1% confidence level. Upon rewatering, drought-stressed plants and ABA-treated plantsrecovered within 2 and 5 d respectively. Thus with both treatments there was a considerable increasein apparent diffusive resistance (and thus a decrease in transpiration)which could not be accounted for by a comparable increase inviscous flow resistance (i.e. stomatal closure). These results suggest that drought stress and ABA treatmentcause an extrastomatal resistance to transpiration in the leavesof yellow lupin plants.  相似文献   

2.
The role of abscisic acid in the control of flower abscission in Lupinus luteus L. was examined. Using a modified extraction and purification technique, endogenous abscisic acid levels in the upper flowers of an inflorescence were found to increase markedly some days before abscission could be detected. When abscisic acid was injected into flower-bearing nodes or fed via the roots, no increase in the abscission rate was obtained at any position in the flowerhead. Application of abscisic acid to only the leaves resulted in a marked increase in flower abscission. The role of abscisic acid per se as a primary controlling factor of flower abscission in yellow lupin is questioned.  相似文献   

3.
Abscisic acid (ABA)-induced increase in stomatal diffusive resistance (SDR) in excised leaves of bean (Phaseolus vulgaris L. cv Pencil Pod) and maize (Zea mays L. cv Golden Bantam) is inhibited by low concentrations of trans-cinnamic acid (TCA) (1 micromolar) and p-coumaric acid (PCA) (10 micromolar) when given together with ABA (10 micromolar) in the transpiration stream through the cut end of the petiole or leaf blade. A concentration effect is observed both in the ABA action and its reversal by phenolic acids. Leaves having attained a high diffusive resistance in ABA solution recover rapidly when transferred to water. ABA (10 micromolar) induced closure of the stomata in onion, Allium cepa L. and Vicia faba epidermal peels. This is associated with loss of K+ from guard cells. In the presence of TCA (10 micromolar) and PCA (10 micromolar) K+ is retained in the guard cells with open stomata. The dark closure of stomata is also inhibited by TCA and PCA. It is suggested that these phenolic acids may inhibit the ABA effect by competing with or acting on some ABA-specific site, probably located on the plasma membrane, regulating flux of K+ ions. A weak association of ABA with the plasma membrane is envisaged because of the rapid recovery obtained upon transferral of the leaves to water.  相似文献   

4.
5.
Membranes are primary sites of perception of environmental stimuli. Polyunsaturated fatty acids are major structural constituents of membranes that also function as modulators of a multitude of signal transduction pathways evoked by environmental stimuli. Different stresses induce production of a distinct blend of oxygenated polyunsaturated fatty acids, “oxylipins.” We employed three Arabidopsis (Arabidopsis thaliana) ecotypes to examine the oxylipin signature in response to specific stresses and determined that wounding and drought differentially alter oxylipin profiles, particularly the allene oxide synthase branch of the oxylipin pathway, responsible for production of jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (12-OPDA). Specifically, wounding induced both 12-OPDA and JA levels, whereas drought induced only the precursor 12-OPDA. Levels of the classical stress phytohormone abscisic acid (ABA) were also mainly enhanced by drought and little by wounding. To explore the role of 12-OPDA in plant drought responses, we generated a range of transgenic lines and exploited the existing mutant plants that differ in their levels of stress-inducible 12-OPDA but display similar ABA levels. The plants producing higher 12-OPDA levels exhibited enhanced drought tolerance and reduced stomatal aperture. Furthermore, exogenously applied ABA and 12-OPDA, individually or combined, promote stomatal closure of ABA and allene oxide synthase biosynthetic mutants, albeit most effectively when combined. Using tomato (Solanum lycopersicum) and Brassica napus verified the potency of this combination in inducing stomatal closure in plants other than Arabidopsis. These data have identified drought as a stress signal that uncouples the conversion of 12-OPDA to JA and have revealed 12-OPDA as a drought-responsive regulator of stomatal closure functioning most effectively together with ABA.To colonize a diverse range of environments successfully, plants have developed converging functional pathways to synthesize an array of secondary metabolites for their protection against hostile conditions. For example, in response to environmental challenges, the oxylipin pathway induces the de novo synthesis of biologically active compounds called “oxylipins,” derivatives of oxygenated polyunsaturated fatty acids (Feussner and Wasternack, 2002; Howe and Schilmiller, 2002). Among the oxylipin pathways, the enzymes allene oxide synthase (AOS) and hydroperoxide lyase (HPL) are considered to partition two major branches that compete for the same substrates and are critical plant stress response pathways (Chehab et al., 2008).Production of the AOS pathway metabolites 12-oxo-phytodienoic acid (12-OPDA) and jasmonic acid (JA) originates from α-linolenic acid of chloroplast membranes (Feussner and Wasternack, 2002). Oxygenation of α-linolenic acid by a 13-lipoxygenase followed by the action of AOS forms an unstable allene oxide that is subsequently cyclized by an allene oxide cyclase to form 12-OPDA (Stenzel et al., 2012). 12-OPDA is the end product of the plastid-localized part of the pathway (Stintzi and Browse, 2000; Schaller and Stintzi, 2009). 12-OPDA is then translocated to the peroxisome where it is reduced by 12-OPDA reductase3 (OPR3) and subsequently activated by CoA ester prior to undergoing three rounds of β-oxidation to form JA (Schaller et al., 2000; Koo et al., 2006; Kienow et al., 2008). 12-OPDA is also a signaling molecule with both overlapping and distinct functions from JA. The Arabidopsis (Arabidopsis thaliana) opr3 mutant is deficient in JA synthesis but accumulates 12-OPDA and displays wild-type resistance to the dipteran Bradysia impatiens and to the fungal pathogen Alternaria brassicicola, generally considered JA-dependent responses (Stintzi et al., 2001). In addition, expression studies have identified genes induced by 12-OPDA but not by JA or methyl jasmonate (MeJA; Kramell et al., 2000; Stintzi et al., 2001; Taki et al., 2005; Ribot et al., 2008). These studies collectively show that 12-OPDA mediates gene expression with or without the canonical JA signaling framework (Stintzi et al., 2001; Taki et al., 2005; Ribot et al., 2008).The HPL branch of the oxylipin pathway produces aldehydes and corresponding alcohols. The first enzyme in the pathway is encoded by one or more HPL genes, differing in their subcellular localization, including microsomes (Pérez et al., 1999), lipid bodies (Mita et al., 2005), and the outer envelope of chloroplasts (Froehlich et al., 2001), and in some cases, with no specific localization in a particular organelle (Noordermeer et al., 2000). This variation in the number of genes and subcellular localization of their encoded enzymes is suggestive of the differential regulation of this pathway and, ultimately, the diversity of their responses, potentially tailored to the nature of stimuli.We have previously identified three rice (Oryza sativa) HPLs (HPL1 through HPL3) differing in their enzyme kinetics and substrate preference. Expression of these enzymes in Arabidopsis accession Columbia (Col-0), a natural hpl loss-of-function mutant, reestablished the production of the pathway metabolites (Chehab et al., 2006) and revealed the key role of HPL-derived metabolites in plant stress signaling (Chehab et al., 2008).The HPL and AOS branches of the oxylipin pathway do not function independently; the signaling crosstalk between them is key to fine tuning plant adaptive responses to a diverse range of perturbations (Halitschke et al., 2004; Liu et al., 2012; Scala et al., 2013).To gain deeper insight into the role of AOS- and HPL-derived metabolites in fine-tuning plant stress responses, we have (1) characterized the corresponding oxylipin signatures in response to wounding and drought in three Arabidopsis ecotypes, (2) generated a range of transgenic lines that produce varying blends of oxylipins tailored to the nature of the stress, (3) elucidated a JA-independent role for 12-OPDA in enhanced drought tolerance in part via regulation of stomatal aperture, and (4) reexamined the 12-OPDA-mediated regulation of stomatal aperture, alone or in combination with abscisic acid (ABA) in the model system Arabidopsis as well as in two crop species, namely tomato (Solanum lycopersicum) and Brassica napus. Unexpectedly, these analyses have identified drought as a stress signal that uncouples the conversion of 12-OPDA to JA and have revealed that 12-OPDA is a previously unrecognized regulator of stomatal closure in response to drought. This function of 12-OPDA, however, is most effective when combined with ABA, a phytohormone known to be essential for plant-adaptive responses to drought stress (Seki et al., 2007).  相似文献   

6.
脱落酸对植物气孔运动的调控作用   总被引:6,自引:2,他引:6  
主要介绍脱落酸对气孔运动的调节作用及其调控气孔运动机制(包括对引起气孔关闭信号转导中第二信使、离子通道、酶活性、膜电压和肌动蛋白细胞合架的调控等)的研究进展。  相似文献   

7.
8.
We address the question of how soil flooding closes stomata of tomato (Lycopersicon esculentum Mill. cv Ailsa Craig) plants within a few hours in the absence of leaf water deficits. Three hypotheses to explain this were tested, namely that (a) flooding increases abscisic acid (ABA) export in xylem sap from roots, (b) flooding increases ABA synthesis and export from older to younger leaves, and (c) flooding promotes accumulation of ABA within foliage because of reduced export. Hypothesis a was rejected because delivery of ABA from flooded roots in xylem sap decreased. Hypothesis b was rejected because older leaves neither supplied younger leaves with ABA nor influenced their stomata. Limited support was obtained for hypothesis c. Heat girdling of petioles inhibited phloem export and mimicked flooding by decreasing export of [14C]sucrose, increasing bulk ABA, and closing stomata without leaf water deficits. However, in flooded plants bulk leaf ABA did not increase until after stomata began to close. Later, ABA declined, even though stomata remained closed. Commelina communis L. epidermal strip bioassays showed that xylem sap from roots of flooded tomato plants contained an unknown factor that promoted stomatal closure, but it was not ABA. This may be a root-sourced positive message that closes stomata in flooded tomato plants.  相似文献   

9.
外源NO、H2O2和ABA对鸡蛋花花冠裂片上气孔关闭的影响   总被引:1,自引:0,他引:1  
以鸡蛋花花冠裂片下表皮为材料,研究不同浓度及不同处理时间的外源NO、H2O2和ABA对鸡蛋花花冠裂片下表皮上气孔关闭的影响,以及NO、H2O2和ABA在调节花冠上气孔关闭中的相互作用。结果表明:单独施用NO、H2O2和ABA明显诱导气孔关闭,并有浓度效应和时间效应;NO、H2O2和ABA两两混合或三者混合施用所诱导气孔关闭的效应大于其单独施用的。说明在诱导气孔关闭时,NO、H2O2和ABA之间可能有协同效应。  相似文献   

10.
Inhibition of Stomatal Opening by Analogues of Abscisic Acid   总被引:1,自引:0,他引:1  
Twenty analogues of abscisic acid have been tested for theiractivity as inhibitors of stomatal opening in isolated epidermisof Commelina communis. A number of derivatives showed slightactivity but only two treatments resulted in significant stomatalclosure and this was accompanied by destruction of the guardcell membranes. Such damage is characteristic of the stomatalresponse to farnesol, another sesquiterpenoid also thought tobe involved in control of water loss. The implication of theseresults in the study of antitranspirants is considered.  相似文献   

11.
Suppression of Stomatal Opening in Leaves Treated with Abscisic Acid   总被引:14,自引:1,他引:13  
Small doses of abscisic acid (approximately 0.02 µg cm-2of leaf) applied to the leaf surface as a 10-4 M solution causedmarked stomatal closure in Xanthium pennsylvanicum, and theeffect persisted for up to 9 days after application. Similareffects were found when 10-4 M abscisic acid was supplied todetached tobacco leaves via their petioles. CO2-free air didnot cause a reversal of the closure, and it was therefore concludedthat the effect was not due simply to an increase in the intercellularCO2concentration; a more direct effect on the stomatal apparatusis suggested. It is considered that abscisic acid could playan endogenous role in the control of stomatal aperture, andthat this, and/or related substances, might be more useful as‘anti-transpirants’ than the phytotoxic substancescurrently employed for this purpose.  相似文献   

12.
We investigated the role of glutathione (GSH) in stomatal movements using a GSH deficient mutant, chlorinal-1 (ch1-1). Guard cells of ch1-1 mutants accumulated less GSH than wild types did. Light induced stomatal opening in ch1-1 and wild-type plants. Abscisic acid (ABA) induced stomatal closure in ch1-1 mutants more than wild types without enhanced reactive oxygen species (ROS) production. Therefore, GSH functioned downstream of ROS production in the ABA signaling cascade.  相似文献   

13.
Age-related Changes in Stomatal Response to Cytokinins and Abscisic Acid   总被引:2,自引:0,他引:2  
Kinetin and zeatin(100 mmol m–3)reversald the ABA-mediated(100mmol m-2)closure of stomata of young maize leaves but did notaffect stomatal apertures of these leaves when applied alone.As leaves aged, kinetin or zeatin alone promoted increased stomatalapertures, while abscisic acid (ABA) applied alone had a reducedeffect on stomata. Even with older leaves, cytokinins reversadthe effect of ABA on stomata. Maize, stomata, abscisic acid, kineusc, zeatin, Zea mays  相似文献   

14.
Ward, D. A. and Drake, B. G. 1988. Osmotic stress temporarilyreverses the inhibitions of photosynthesis and stomatal conductanceby abscisic acid—evidence that abscisic acid induces alocalized closure of stomata in intact, detached leaves.—J.exp. Bot 39: 147–155. The influence of osmotic stress on whole leaf gas exchange wasmonitored in detached leaves of Glycine max supplied with anexogenous concentration (10–5 mol dm–3) of ±abscisicacid (ABA) sufficient to inhibit net photosynthesis and stomatalconductance by 60% and 70%, respectively, under a saturatingirradiance and normal air. Raising the osmotic (sorbitol) concentrationof the ABA solutions feeding leaves elicited rapid and synchronousreversals of the ABA-dependent inhibitions of net photosynthesisand conductance. These reversals reached a peak simultaneously,after which photosynthesis and conductance declined. The magnitudeof the transient stimulations at peak height was dependent uponthe sorbitol concentration of the ABA feeding solution, althoughthe time-course of the transients (half time, 4–6 min)was similar for the different osmotic concentrations applied.Irrespective of transient size the relative changes of photosynthesisand conductance were comparable; consequently the calculatedpartial pressure of CO2 in the substomatal space (Ci) remainedrelatively constant during the transient phase. In contrastto the ABA-treated leaves, elevating the osmotic concentrationof the distilled water supply feeding control leaves stimulatedconductance to a much greater relative extent than photosynthesis.The co-stimulations of photosynthesis and conductance inducedin ABA-treated leaves by osmotic shock were not due to a restrictionin the transpirational uptake of ABA and occurred irrespectiveof the source osmoticum applied. These data are consistent with the hypothesis that the ABA-dependentinhibition of photosynthesis at constant Ci is an artifact causedby the spatially heterogeneous closure of stomata in responseto ABA. Alternative explanations for the responses are, however,considered. Key words: Abscisic acid, photosynthesis, osmotic stress, Glycine max, stomatal conductance  相似文献   

15.
16.
17.
18.
Radin JW  Parker LL  Guinn G 《Plant physiology》1982,70(4):1066-1070
Suboptimal N nutrition increased the water potential for stomatal closure in water stressed cotton (Gossypium hirsutum L.) leaves. This increased sensitivity to water stress had two components, increased accumulation of abscisic acid (ABA) and increased apparent stomatal sensitivity to ABA. Low N increased the threshold water potentials for stomatal closure and ABA accumulation by about 4 bars and 2 bars, respectively. Low N also greatly increased stomatal response to low concentrations of exogenous ABA applied to excised leaves through the transpiration stream. In low N leaves, kinetin decreased stomatal response to ABA to the level observed with high N leaves. Kinetin by itself had little effect on stomata, nor did it alter stomatal response to ABA in high N leaves. The results suggest a cytokinin-ABA balance which is altered by suboptimal N nutrition to favor stomatal closure during stress.

Ambient temperature and N nutrition interacted to alter stomatal response to water stress. Stress-induced ABA accumulation and apparent stomatal sensitivity to ABA were independently affected. The effects of each treatment, and their interaction, could be explained as the net result of changes in both accumulation and apparent sensitivity. Although the results document environmental control of stomatal response to ABA, either altered partitioning of ABA between active and inactive pools, or altered sensitivity of the guard cells, could account for the data.

  相似文献   

19.
Plants of Lupinus albus were grown for 51 d under control (1.1mol m–3 NaCl) and saline (40 mol m–3 NaCl) conditions.Plants were harvested and changes of carbon, nitrogen and abscisicacid (ABA) contents of individual organs were determined 41d and 51 d after germination. In the period between the twoharvests xylem and phloem saps were collected and respirationand photosynthesis of individual organs were measured. Usingflows of carbon, C/ABA ratios and increments of ABA flows ofABA in phloem and xylem and rates of biosynthesis and degradationof ABA were calculated. Both under control and saline conditionsnet biosynthesis occurred in the root, the basal strata of leavesand in the inflorescence. Metabolic degradation of ABA tookplace in the stem internodes and apical leaf strata. Salt stress increased xylem transport of ABA up to 10-fold andphloem transport to the root up to 5-fold relative to that ofthe controls. A considerable amount of ABA in the xylem saporiginated from biosynthesis in the roots, i.e. 55% in salt-treatedand smaller than 28% in control plants. The remaining part ofABA in the xylem sap originated from the shoot: it was translocatedin the phloem from fully differentiated leaves towards the rootand from there it was recirculated back to the aerial partsof the plant. The data suggest that ABA may serve as a hormonalstress signal from the root system. Key words: Lupinus albus, salt stress, abscisic acid, long distance transport  相似文献   

20.
Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号