首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous study it was shown that the acetyl moiety can be incorporated into the protein of purified synaptosomes (1). This process was inhibited by veratridine and the inhibitory effect was counteracted by tetrodotoxin. This suggested that the flux of Na+ may be related to the acetylation process. We now report that in a sodium free medium the amount of acetylation is increased and the inhibitory effect of veratridine (veratrine) is no longer evident. The addition of Na+ leads to a decrease in acetylation in the presence of veratrine. The presence of scorpion toxin has an effect similar to that of veratrine and the two are not additive. Hence, they appear to act on a common site. Molecular sieve chromatography shows four radioactively labeled peaks, two of which are particularly affected by veratrine. We also show that [3H]acetate incorporated into synaptosomal protein can be recovered as acetyldansylhydrazide. In addition, the concentration of free and bound acetate was measured in whole brain as well as in synaptosomes.  相似文献   

2.
Summary Veratridine opens voltage-dependent Na+ channels in many metazoans. InParamecium, which has voltage-dependent Ca2+ channels and a Ca/K action potential, no such Na+ channels are known. A Ca-inward current is correlated to an intracellular increase in cGMP. The addition of veratridine toParamecium wildtype and to pawn mutant cells, which lack the Ca-inward current, transiently increased intracellular levels of cGMP about sevenfold to 40 pmol/mg protein. A half-maximal effect was obtained with 250 m veratridine. The increase in cGMP was maximal about 15 sec after the addition of veratridine and declined rapidly afterwards. Intracellular cAMP levels were not affected. The effect of veratridine on cGMP was dependent on the presence of extracellular Ca2+. The time dependence and extent of stimulation closely resembled the effects observed after stimulation by Ba2+, which causes the repetitive firing of action potentials, Ca-dependent ciliary reversal, and cGMP formation. The effects of Ba2+ and veratridine were not additive. Wildtype cells and, surprisingly, also pawn mutant cells showed avoiding reactions upon addition of veratridine indicating that it induced a Ca2+ influx into the cilia, which causes ciliary reversal. The potency of veratridine to stimulate cGMP formation was little affected by Na+ in wildtype cells, three pawn mutant strains, and in the cell line fast-2, which is defective in a Ca-dependent Na-inward current. Divalent cations (Ca2+, Mg2+, and Ba2+) inhibited the effects the veratridine similar to metazoan cells. The results indicate that veratridine can open the voltage-operated Ca2+ channels inParamecium wildtype and, most interestingly, in pawn mutant cells. The pawn mutation is suggested to represent a defect in the activation of the Ca2+ channel. This explains the lack of differences in ciliary proteins between wildtype and pawn cells reported earlier.  相似文献   

3.
Abstract: Enhanced phosphorylation of two specific protein bands accompanied catecholamine secretion from cultured bovine adrenal medulla cells stimulated by different secretagogues. Cells preincubated with 32Pi were treated with nicotine, veratridine, Ionomycin, or barium. Each of these secretagogues stimulated the phosphorylation of two protein bands with apparent molecular weights of 60,000 and 95,000. Phosphorylation of the 60,000 M.W. protein band was two- to threefold higher than that of the 95,000 M.W. band on stimulation with nicotine, veratridine, or barium, but Ionomycin stimulated phosphorylation of each protein band to the same extent. In general, the increase in phosphorylation was most rapid during the first minute of stimulation and occurred prior to detectable secretion. Phosphorylation reached a relatively constant level within 5 min after onset of stimulation at a time when catecholamine release was still proceeding at a rapid rate. Nicotine-stimulated phosphorylation and catecholamine secretion were calcium-dependent and blocked by d -tubocurarine, whereas tetrodotoxin inhibited veratridine-stimulated secretion and phosphorylation. We conclude that catecholamine secretion and protein phosphorylation occur under similar conditions and that Ca2+-dependent incorporation of phosphate into specific proteins may be a link in stimulus-secretion coupling.  相似文献   

4.
The expression of the synaptic vesicle protein, synaptotagmin, in developing rat superior cervical ganglia is influenced by transsynaptic factors associated with membrane depolarization. The present study examines the role of cyclic AMP in the regulation of synaptotagmin in neonatal superior cervical ganglia maintained in explant culture. Ganglia were treated for 48 h in vitro with the Na+‐channel ionophore, veratridine, or with pharmacological agents that alter cyclic AMP levels. Levels of cyclic AMP and synaptotagmin were determined by radioimmunoassay. Veratridine treatment significantly increased cyclic AMP in cultured ganglia, with a long time course, and also increased synaptotagmin levels. Drugs that elevate cyclic AMP levels significantly increased synaptotagmin levels, with similar magnitude to that produced by veratridine treatment. These pharmacological agents did not alter neuron survival or total ganglionic protein content. No additive effects were observed after combined treatment with veratridine and pharmacological agents that increased cyclic AMP. Agents that blocked adenylyl cyclase blocked the veratridine‐induced increase in synaptotagmin levels. The results suggest that regulation of expression of synaptotagmin in neonatal sympathetic neurons is mediated partially by cyclic AMP. © 2001 John Wiley & Sons, Inc. J Neurobiol 46: 281–288, 2001  相似文献   

5.
The activation of the action potential Na+ ionophore by veratridine and batrachotoxin is time- and concentration-dependent and completely reversible. Batrachotoxin acts more slowly than veratridine. The concentration dependence of activation at equilibrium suggests reversible interaction of each toxin with a single class of independent sites having dissociation constants at physiologic ion concentrations of 80 plus or minus 13 muM for veratridine and 0.4 plus or minus muM for batrachotoxin. The maximum velocity of Na+ uptake at 50 mM Na+ is 128 plus or minus 12 nmol/min/mg in the presence of batrachotoxin compared to 48 plus or minus 4 nmol/min/mg in the presence of veratridine. Treatment of cells with excess veratridine in addition to batrachotoxin inhibits batrachotoxin-dependent 22-Na+ uptake. The concentration dependence of this inhibition suggests that it reflects competitive displacement of batrachotoxin from its binding site by veratridine. The activation by veratridine and batrachotoxin is inhibited in a competitive manner by divalent cations. The inhibition by divalent cations exhibits significant ion specificity with Mn-2+ greater than Co-2+ greater than Ni-2+ greater than Ca-2+ greater than Mg-2+ greater than Sr-2+. The inhibition constants (KI) for Ca-2+ are 0.84 mM for veratridine-dependent 22-Na+ uptake and 1.2 mM for batrachotoxin-dependent 22-Na+ uptake. The activation by veratridine and batrachotoxin is inhibited in a noncompetitive manner by tetrodotoxin. The apparent KD for tetrodotoxin as 11 plus or minus 1 nM in the presence of 150 mM Na+ and approximately 8.5 nM in 50 mM Na+. Divalent cations do not affect the apparent KD for tetrodotoxin. A hypothesis is presented which suggests that batrachotoxin, veratridine, and divalent cations interact with an activation site associated with the action potential Na+ ionophore, whereas tetrodotoxin interacts with a physically and functionally independent site involved in the transport of monovalent cations by the ionophore.  相似文献   

6.
A lipoidal-protein complex has been isolated from rat gastrocnemius tissue which exhibits a highly specific binding capacity for [3H]veratridine. Purification of the complex has been accomplished by a number of chromatographic steps including affinity chromatography in organic solvents utilizing a resin synthesized by oxirane coupling of veratridine to Sephadex LH-20. The purified complex binds veratridine but not tetrodotoxin or a number of cholinergic ligands. Veratridine binding to the complex is inhibited by aconitine but not tetrodotoxin or cholinergic ligands. The complex has both veratridine saturable (KD= 13 μm ) and non-saturable (KD1 Mm ) binding components. Preliminary chemical analysis showed that the complex is a proteoglycolipid with a protein: carbohydrate: phosphorous ratio of 1.5:1.1:1.0. A discussion is presented favoring the identity of the isolated proteoglycoiipid as a portion of the macromolecular complex comprising the axonal sodium action potential ionophore.  相似文献   

7.
Abstract: Bovine serum albumin (BSA) is shown to stimulate selectively the synaptosomal uptakes of those amino acids that are dependent on external Na+ and that are inhibited by veratridine. Thus, the stimulation can be seen in the case of aspartic acid, glutamic acid, glycine, proline, and γ-aminobutyric acid, but not with serine and threonine. Further, studies on the interaction of veratridine, valinomycin, and BSA on the uptake of proline suggest that the primary action of the albumin is to increase the influx of proline. Such an action could result as a consequence of stabilization of the Na+ gradient by increased endogenous levels of ATP. Intrasynaptosomal ATP was increased in the presence of BSA but significantly decreased by veratridine.  相似文献   

8.
Synapses in explant cultures of fetal rat neocortex at day 18 in vitro were stimulated by veratridine (10?4M) for 20 min. The cultures were subsequently processed for electron microscopy and the synapses were analyzed by quantitative techniques, incorporating set mathematical treatment. The mean values of area, perimeter, and form factor of the presynaptic elements significantly increased following veratridine stimulation, compared to the values of control synapses. The length of the postsynaptic thickening also increased, while synaptic curvature did not change significantly in the veratridine group. A fivefold reduction was observed in the mean number of synaptic vesicles per presynaptic element and in the vesicle-terminal area ratio, following veratridine stimulation. The cytoplasm-terminal area ratio and the occurrence of vacuoles/cisternae significantly increased after veratridine application. Planar measurement of membranes (boundary length) of different presynaptic organelles revealed that the total membrane did not change significantly in the veratridine group. The data indicated an increase in volume and swelling of the pre- and postsynaptic elements, considerable depletion of synaptic vesicles, and preservation of the total presynaptic membrane following veratridine stimulation in nerve tissue culture.  相似文献   

9.
Summary 1. Nicotine stimulated two Ca2+-dependent processes in rat frontal cortex synaptosomes: the phosphorylation of an 80-kDa protein band and the release of endogenous ACh.3 Both effects were mediated by neuronal nAChRs and coincided with depolarization of the synaptosomal plasma membrane induced by the drug. Changes in the state of phosphorylation of the 80-kDa band (presumed to contain synapsin I) were correlated with changes in the release of ACh as follows, from 2 to 4.2. Blockade of predominant, nerve terminal P-type Ca2+ channels with -agatoxin-IVA, did not prevent nicotine from stimulating ACh release. In contrast, exposure to the toxin partially inhibited the release promoted by the depolarizing agent veratridine and attenuated protein phosphorylation induced by either nicotine or veratridine. Taken together, these data suggest that, upon nicotine stimulation, Ca2+ enters nerve terminals through two distinct pathways. The first, via Ca2+ channels, is necessary (but not sufficient) for both nicotine-induced phosphorylation and ACh release. The second, both necessary and sufficient for nicotine-induced phosphorylation and release, is the neuronal nAChR itself.3. Preincubation of the synaptosomes with a subeffective concentration of nicotine inactivated both nicotine-induced ACh liberation and phosphorylation. This shows that diminished release is associated to decreased phosphorylation of the 80-kDa protein band, most likely as a consequence of nicotine-promoted nAChR desensitization.4. Augmented ACh release and phosphorylation of the 80-kDa protein band were achieved by using the protein phosphatase inhibitor okadaic acid. However, okadaic acid did not summate with either nicotine or veratridine to increase ACh release further. This is probably because okadaic acid, as in other neurons, increases intracellular Ca2+ (Cholewinskiet al., 1993), thus promoting desensitization of ACh release.  相似文献   

10.
(i) Effects of veratridine on ionic conductances of human peripheral blood T lymphocytes have been investigated using the whole-cell patch-clamp technique, (ii) Veratridine reduces the net outward current evoked by membrane depolarizations. The reduction originates from block of a 4-aminopyridine-sensitive, voltage-gated K+ current, (iii) Human T lymphocytes do not appear to express voltage-gated Na+ channels, since inward currents are observed neither in control nor in veratridine- and bretylium-exposed lymphocytes. (iv) The effect of veratridine consists of an increase in the rate of decay of the voltage-gated K+ current and a reduction of the peak current amplitude. Both effects depend on veratridine concentration. Halfmaximum block occurs at 97 m and the time constant of decay is reduced by 50% at 54 m of veratridine. (v) Possible mechanisms of veratridine action are discussed. The increased rate of K+ current decay is most likely due to open channel block. The decrease of current amplitude may involve an additional mechanism. (vi) In cultured mouse neuroblastoma N1E-115 cells, veratridine blocks a component of voltage-gated K+ current, in addition to its effect on voltage-gated Na+ current. This result shows that the novel effect of veratridine is not confined to lymphocytes.We thank Jacobien Künzel of the Wilhelmina Hospital for Children, Utrecht, for providing the blood samples and Aart de Groot for technical assistance. The research was supported by a fellowship of the Royal Netherlands Academy of Arts and Sciences to M. Oortgiesen.  相似文献   

11.
The purification of axonal membranes of crustaceans was followed by measuring enrichment in [3H]tetrodotoxin binding capacity and in Na+, K+-ATPase activity. A characteristic of these membranes is their high content of lipids and their low content of protein as compared to other types of plasmatic membranes. The axonal membrane contains myosin-like, actin-like, tropomyosin-like, and tubulin-like proteins. It also contains Na+, K+-ATPase and acetylcholinesterase. The molecular weights of these two enzymes after solubilization are 280,000 and 270,000, respectively. The molecular weights of the catalytic subunits are 96,000 for ATPase and 71,000 for acetylcholinesterase. We confirmed the presence of a nicotine binding component in the axonal membrane of the lobster but we have been unable to find [3H]nicotine binding to crab axonal membranes. The binding to axonal membranes og of the sodium channel, has been studied in detail. The dissociation constant for the binding of [3H]tetrodotoxin to the axonal membrane receptor is 2.9 nM at pH 7.4. The concentration of the tetrodotoxin receptor in crustacean membranes is about 10 pmol/mg of membrane protein, 7 times less than the acetylcholinesterase, 30 times less than the Na+, K+-ATPase, and 30 times less than the nicotine binding component in the lobster membrane. A reasonable estimate indicates that approximately only one peptide chain in 1000 constitutes the tetrodotoxin binding part of the sodium channel in the axonal membrane. Veratridine, which acts selectively on the resting sodium permeability, binds to the phospholipid part of the axonal membrane. [3H]Veratridine binding to membranes parallels the electrophysiological effect. Veratridine and tetrodotoxin have different receptor sites. Although tetrodotoxin can repolarize the excitable membrane of a giant axon depolarized by veratridine, veratridine does not affect the binding of [3H]tetrodotoxin to purified axonal membranes. Similarly, tetrodotoxin does not affect the binding of [3H]veratridine to axonal membranes. Scorpion neurotoxin I, a presynaptic toxin which affects both the Na+ and the K+ channels, does not interfere with the binding of [3H]tetrodotoxin or [3H]veratridine to axonal membranes. Tetrodotoxin, veratridine, and scorpion neurotoxin I, which have in common the perturbation of the normal functioning of the sodium channel, act upon three different types of receptor sites.  相似文献   

12.
Abstract: Voltage-gated sodium channels serve as a target for many neurotoxins that bind to several distinct, allosterically interacting receptor sites. We examined the effect of membrane potentials (incited by increasing external K+ concentrations) on the binding modulation by veratridine, brevetoxin, and tetrodotoxin of the scorpion α-toxin AaH II to receptor site 3 on sodium channels of rat brain synaptosomes. Depolarization is shown to differentially modulate neurotoxin effects on AaH II binding: Veratridine increase is potentiated, brevetoxin's inhibitory effect is reduced, and tetrodotoxin enhancement is evident mainly at resting membrane potential (5 m M K+). Both tetrodotoxin and veratridine apparently reverse the inhibition of AaH II binding by brevetoxin at resting membrane potential, but only veratridine is able to partially restore AaH II binding at 0 mV (135 m M K+). Thus, the allosteric interactions are grouped into two categories, depending on the membrane potential. Under depolarized conditions, the cooperative effects among veratridine and brevetoxin on AaH II binding fit the previously described two-state conformational model. At resting membrane potential, additional interactions are revealed, which may be explained by assuming that toxin binding induces conformational changes on the channel structure, in addition to being state-dependent. Our results provide a new insight into neurotoxin action and the complex dynamic changes underlying allosteric coupling of neurotoxin receptor sites, which may be related to channel gating.  相似文献   

13.
The expression of the synaptic vesicle protein, synaptotagmin, in developing rat superior cervical ganglia is influenced by transsynaptic factors associated with membrane depolarization. The present study examines the role of cyclic AMP in the regulation of synaptotagmin in neonatal superior cervical ganglia maintained in explant culture. Ganglia were treated for 48 h in vitro with the Na+-channel ionophore, veratridine, or with pharmacological agents that alter cyclic AMP levels. Levels of cyclic AMP and synaptotagmin were determined by radioimmunoassay. Veratridine treatment significantly increased cyclic AMP in cultured ganglia, with a long time course, and also increased synaptotagmin levels. Drugs that elevate cyclic AMP levels significantly increased synaptotagmin levels, with similar magnitude to that produced by veratridine treatment. These pharmacological agents did not alter neuron survival or total ganglionic protein content. No additive effects were observed after combined treatment with veratridine and pharmacological agents that increased cyclic AMP. Agents that blocked adenylyl cyclase blocked the veratridine-induced increase in synaptotagmin levels. The results suggest that regulation of expression of synaptotagmin in neonatal sympathetic neurons is mediated partially by cyclic AMP.  相似文献   

14.
藜芦碱和乌头碱在受损背根节神经元诱发不同的放电模式   总被引:4,自引:0,他引:4  
Duan JH  Xing JL  Yang J  Hu SJ 《生理学报》2005,57(2):169-174
为了研究钠通道失活门阻断后受损背根节神经元放电模式的变化特征,在大鼠背根节慢性压迫模型上采用单纤维技术记录A类神经元的自发放电。藜芦碱和乌头碱是钠通道失活门的抑制剂,但二者作用于不同的位点,前者结合于D2-S6,后者结合于D3-S6。我们比较了这两种试剂引发的放电模式。结果发现,在同一神经元,藜芦碱(1.5~5.0μmol/L)可以引起放电峰峰间期的慢波振荡,即峰峰间期由大逐渐减小,然后又逐渐增大,形成重复的振荡波形,每个振荡持续约数十秒至数分钟:而乌头碱(10~200μmol/L)则引起强直性放电,即峰峰间期逐渐减小,然后维持在一个稳定的水平。这两种不同的放电模式不因背景放电或试剂浓度的不同而发生明显的改变。实验结果表明,藜芦碱和乌头碱在受损的背根节神经元可以引发不同的放电模式,这可能与它们结合于钠通道上不同位点的抑制作用有关。  相似文献   

15.
A fluorescence assay for measuring Na channel activation in liposomes containing voltage-sensitive Na channels isolated from Electrophorus electricus is described. The assay is based on transport of a heavy-metal cation, T1+, through the activated channel to quench fluorescence of an internalized, water-soluble chromophore. The channel is "locked" in a chronically opened configuration with alkaloid neurotoxins such as veratridine or batrachotoxin. Diffusion potentials are used to amplify the signal, and enlarged liposomes (greater than 8000 A) result in time courses extended to the range of seconds. Analysis of the kinetics of quenching yields parameters that behave as linear functions of channel activation and reflect vesicle size and channel abundance. The k1/2's for activation by veratridine and batrachotoxin were 5 microM and 169 nM, respectively, and that for tetrodotoxin blockade was 4 nM. Externally applied QX-222 and tetrodotoxin each acted to partially block the stimulated signal, as expected for compounds that act on oppositely oriented channels in the membrane. Single-channel conductances estimated with either veratridine or batrachotoxin ranged between 0.6 and 40.7 pS, corresponding to transport numbers of (1.2 X 10(5)) to (8.1 X 10(6)) ions s-1 channel-1 under the conditions of assay. The assay is approximately 100-fold more sensitive than radiotracer influx assays, requiring 1 fmol of protein per time course.  相似文献   

16.
A multipotential stem-cell-type cell line (RT4-AC) isolated from a rat peripheral neurotumor differentiates in culture into two neuronal-type cells (RT4-B and RT4-E) or into a glial-type cell (RT4-D). The neuronal classification of RT4-B and RT4-E cells is based on their positive response to veratridine in the tetrodotoxin-sensitive Na+-influx and Rb+-efflux assays and on the action potential observed upon hyperpolarized stimulation. In addition, these neuronal cell types do not synthesize two glial proteins, S100 protein (S100P) and glial fibrillary acidic protein (GFAP). The glial classification of RT4-D is based on the syntheses of S100P and GFAP. Additionally, RT4-D does not display veratridine-activated Na+ influx and Rb+ efflux nor action potential. The stem cell type, RT4-AC, expresses both neuronal and glial properties to a lesser degree. In the neuronal-type cell lines of the RT4 family (RT4-B and RT4-E), the large veratridine-activated Na+ influx can further be stimulated by scorpion toxin. The Na+ influx of the stem cell (RT4-AC), however, is only slightly stimulated by veratridine alone, but greatly stimulated by the addition of veratridine and scorpion toxin. These observations suggest that a progressive differentiation of voltage-dependent Na+ channels may have occurred by the cell-type conversion from the stem cell type to the neuronal cell types. The exact nature of the change in Na+ channels is currently not known.  相似文献   

17.
18.
Experiments investigating both the binding of radioactively labelled saxitoxin (STX) and the electrophysiological response to drugs that increase the sodium permeability of excitable membranes were conducted in an effort to detect sodium channels in glial cells of the optic nerve of Necturus maculosa, the mudpuppy. Glial cells in nerves from chronically enucleated animals, which lack optic nerve axons, show no saturable uptake of STX whereas a saturable uptake is clearly present in normal optic nerves. The normal nerve is depolarized by aconitine, batrachotoxin, and veratridine (10(-6)-10(-5) M), whereas the all-glial preparation is only depolarized by veratridine and at concentrations greater than 10(-3) M. Unlike the depolarization caused by veratridine in normal nerves, the response in the all-glial tissue is not blocked by tetrodotoxin nor enhanced by scorpion venom (Leiurus quinquestriatus). In glial cells of the normal nerve, where axons are also present, the addition of 10(-5) M veratridine does lead to a transient depolarization; however, it is much briefer than the axonal response to veratridine in this same tissue. This glial response to veratridine could be caused by the efflux of K+ from the drug-depolarized axons, and is similar to the glial response to extracellular K+ accumulation resulting from action potentials in the axon.  相似文献   

19.
The influence of membrane depolarization on somatostatin secretion and protein synthesis by fetal and neonatal cerebrocortical neurons was studied. Cortical cells obtained by mechanical dispersion were maintained as monolayer cultures for 8 days. The ability of fetal cerebrocortical and hypothalamic cells to release immunoreactive somatostatin (IR-SRIF) was confirmed. Total protein synthesis was determined by the incorporation of [3H]phenylalanine into trichloroacetic acid-precipitable proteins. To study the effect of acute depolarization on protein synthesis, cells were incubated for 30 min with [3H]phenylalanine or [3H]leucine and the depolarizing agent. In fetal cerebrocortical cells, potassium (30 and 56 mM) decreased protein synthesis and RNA levels and increased IR-SRIF release. Depolarization by veratridine, a sodium channel activator, induced a similar effect. The effect of veratridine on IR-SRIF and protein synthesis was reversed by tetrodotoxin, a sodium channel blocker, or verapamil, a calcium channel blocker. These findings suggest that protein synthesis by cerebrocortical cells is decreased in fetal brain cells by membrane depolarization and is dependent on Na+ and Ca2+ entry into cells. In postnatal (day 7) cerebrocortical cells, depolarization induced by high potassium concentrations led to a concomitant increase in protein synthesis, RNA content, and somatostatin release. These findings indicate that depolarization of the cellular membrane is coupled to an increase in protein synthesis in neonatal, but not in fetal, dispersed brain cells.  相似文献   

20.
Abstract— —The effects of brief exposures of rat brain synaptosomes to veratridine, gramicidin D and valinomycin on noradrenaline uptake were investigated. All three drugs inhibited the Na+-dependent component of noradrenaline uptake by synaptosomes. These effects were independent of extracellular Ca2 + concentrations, indicating that the reductions were not due to the release of newly accumulated noradrenaline.
Gramicidin D reduced the Vmax for noradrenaline uptake, whereas veratridine and valinomycin reduced the Vmax and also increased the Vm for uptake.
Most of these findings can be explained on the basis of the effects that these drugs have on the inward-directed electrochemical gradients for Na+ across synaptosomal membranes, although, in the cases of veratridine and valinomycin, the elevated Km's suggest that an impairment of noradrenaline binding to its carriers might also be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号