首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protocadherins have been shown to regulate cell adhesion, cell migration, cell survival, and tissue morphogenesis in the embryo and the central nervous system, but little is known about the mechanism of protocadherin function. We previously showed that Xenopus paraxial protocadherin (PAPC) mediates cell sorting and morphogenesis by down-regulating the adhesion activity of a classical cadherin, C-cadherin. Classical cadherins function by forming lateral dimers that are necessary for their adhesive function. However, it is not known whether oligomerization also plays a role in protocadherin function. We show here that PAPC forms oligomers that are stabilized by disulfide bonds formed between conserved Cys residues in the extracellular domain. Disruption of these disulfide bonds by dithiothreitol or mutation of the conserved cysteines results in defects in oligomerization, post-translational modification, trafficking to the cell surface and cell sorting function of PAPC. Furthermore, none of the residues in the cytoplasmic domain of PAPC is required for its cell sorting activity, whereas both the transmembrane domain and the extracellular domain are necessary. Therefore, protein oligomerization and/or protein interactions via the extracellular and transmembrane domains of PAPC are required for its cell sorting function.  相似文献   

2.

Background

Paraxial protocadherin (PAPC) and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3) are induced by TGFβ signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion.

Principal Findings

We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, and they form a complex with cadherins. By itself PAPC reduces cell adhesion physiologically to induce cell sorting, while FLRT3 disrupts adhesion excessively to cause cell dissociation. However, when expressed together PAPC limits the cell dissociating and tissue disrupting activity of FLRT3 to make it effective in physiological cell sorting. PAPC counteracts FLRT3 function by inhibiting the recruitment of the GTPase RND1 to the FLRT3 cytoplasmic domain.

Conclusions/Significance

PAPC and FLRT3 form a functional complex with cadherins and PAPC functions as a molecular “governor” to maintain FLRT3 activity at the optimal level for physiological regulation of C-cadherin adhesion, cell sorting, and morphogenesis.  相似文献   

3.
Wnt-11/planar cell polarity signaling polarizes mesodermal cells undergoing convergent extension during Xenopus laevis gastrulation. These shape changes associated with lateral intercalation behavior require a dynamic modulation of cell adhesion. In this paper, we report that Wnt-11/frizzled-7 (Fz7) controls cell adhesion by forming separate adhesion-modulating complexes (AMCs) with the paraxial protocadherin (PAPC; denoted as AMCP) and C-cadherin (denoted as AMCC) via distinct Fz7 interaction domains. When PAPC was part of a Wnt-11-Fz7 complex, its Dynamin1- and clathrin-dependent internalization was blocked. This membrane stabilization of AMCP (Fz7/PAPC) by Wnt-11 prevented C-cadherin clustering, resulting in reduced cell adhesion and modified cell sorting activity. Importantly, Wnt-11 did not influence C-cadherin internalization; instead, it promoted the formation of AMCC (Fz7/Cadherin), which competed with cis-dimerization of C-cadherin. Because PAPC and C-cadherin did not directly interact and did not form a joint complex with Fz7, we suggest that Wnt-11 triggers the formation of two distinct complexes, AMCC and AMCP, that act in parallel to reduce cell adhesion by hampering lateral clustering of C-cadherin.  相似文献   

4.
Protocadherins have homophilic adhesion properties and mediate selective cell-cell adhesion and cell sorting. Knockdown of paraxial protocadherin (PAPC) function in the Xenopus embryo impairs tissue separation, a process that regulates separation of cells of ectodermal and mesodermal origin during gastrulation. We show that PAPC can modulate the activity of the Rho GTPase and c-jun N-terminal kinase, two regulators of the cytoskeletal architecture and effectors of the planar cell polarity pathway. This novel signaling function of PAPC is essential for the regulation of tissue separation. In addition, PAPC can interact with the Xenopus Frizzled 7 receptor, and both proteins contribute to the development of separation behavior by activating Rho and protein kinase Calpha.  相似文献   

5.
Treatment of Xenopus animal pole tissue with activin results in the induction of mesodermal cell types and a dramatic elongation of the tissue. The morphogenetic movements involved in the elongation appear similar to those in normal gastrulation, which is driven by cell rearrangement and cell intercalations. We have used this system to explore the potential regulation of cell-cell adhesion and cadherin function during morphogenesis. Quantitative blastomere aggregation assays revealed that activin induction reduced the calcium-dependent adhesion between blastomeres. Activin-induced blastomeres formed smaller aggregates, and a greater proportion of the population remained as single cells compared to uninduced blastomeres. The aggregation was mediated by C-cadherin because C-cadherin was present in the blastomeres during the aggregation assay, and monoclonal antibodies against C-cadherin inhibited the calcium-dependent aggregation of blastomeres. E-cadherin was not detectable until after the completion of the assay and, therefore, does not explain the adhesive differences between induced and uninduced blastomeres. L cells stably expressing C- cadherin (LC cells) were used to demonstrate that C-cadherin activity was specifically altered after activin induction. Blastomeres induced with activin bound fewer LC cells than uninduced blastomers. L cells not expressing C-cadherin did not adhere to blastomeres. The changes in C-cadherin-mediated adhesion occurred without detectable changes in the steady-state levels of C-cadherin or the amount of C-cadherin present on the surface of the cell. Immunoprecipitation of C-cadherin and its associated catenins revealed that the ratio of C-cadherin and the catenins was not altered by activin induction. These results demonstrate that activin decreases the adhesive function of existing C- cadherin molecules on the surface of blastomeres and suggest that decreased cadherin mediated cell-cell adhesion is associated with increased morphogenetic movement.  相似文献   

6.
Paraxial protocadherin (PAPC) is a cell adhesion molecule that marks cells undergoing convergence-extension cell movements in Xenopus and zebrafish gastrulating embryos. Here a mouse homologue (mpapc) was identified and characterized. During early- to mid-gastrulation, mpapc is expressed in the primitive streak as the trunk mesoderm undergoes morphogenetic cell movements. At head-fold stage mpapc expression becomes localized to paraxial regions in which somites are formed in the segmental plate. At later stages, mpapc displays a complex expression pattern in cerebral cortex, olfactory bulb, inferior colliculus, and in longitudinal stripes in hindbrain. To analyze the effect of the loss of PAPC function during mouse development, a null allele of the mouse papc gene was generated. Homozygous animals show no defects in their skeleton and are viable and fertile.  相似文献   

7.
BACKGROUND: One prominent example of segmentation in vertebrate embryos is the subdivision of the paraxial mesoderm into repeating, metameric structures called somites. During this process, cells in the presomitic mesoderm (PSM) are first patterned into segments leading secondarily to differences required for somite morphogenesis such as the formation of segmental boundaries. Recent studies have shown that a segmental pattern is generated in the PSM of Xenopus embryos by genes encoding a Mesp-like bHLH protein called Thylacine 1 and components of the Notch signaling pathway. These genes establish a repeating pattern of gene expression that subdivides cells in the PSM into anterior and posterior half segments, but how this pattern of gene expression leads to segmental boundaries is unknown. Recently, a member of the protocadherin family of cell adhesion molecules, called PAPC, has been shown to be expressed in the PSM of Xenopus embryos in a half segment pattern, suggesting that it could play a role in restricting cell mixing at the anterior segmental boundary. RESULTS: Here, we examine the expression and function of PAPC during segmentation of the paraxial mesoderm in Xenopus embryos. We show that Thylacine 1 and the Notch pathway establish segment identity one segment prior to the segmental expression of PAPC. Altering segmental identity in embryos by perturbing the activity of Thylacine 1 and the Notch pathway, or by treatment with a protein synthesis inhibitor, cycloheximide, leads to the predicted changes in the segmental expression of PAPC. By disrupting PAPC function in embryos using a putative dominant-negative or an activated form of PAPC, we show that segmental PAPC activity is required for proper somite formation as well as for maintaining segmental gene expression within the PSM. CONCLUSIONS: Segmental expression of PAPC is established in the PSM as a downstream consequence of segmental patterning by Thylacine 1 and the Notch pathway. We propose that PAPC is part of the mechanism that establishes the segmental boundaries between posterior and anterior cells in adjacent segments.  相似文献   

8.
Gastrulation is a morphogenetic process in which tightly coordinated cell and tissue movements establish the three germ layers (ectoderm, mesoderm, and endoderm) to define the anterior-to-posterior embryonic organization [1]. To elicit this movement, cells modulate membrane protrusions and undergo dynamic cell interactions. Here we report that ankyrin repeats domain protein 5 (xANR5), a novel FGF target gene product, regulates cell-protrusion formation and tissue separation, a process that develops the boundary between the ectoderm and mesoderm [2, 3], during Xenopus gastrulation. Loss of xANR5 function by antisense morpholino oligonucleotide (MO) caused a short trunk and spina bifida without affecting mesodermal gene expressions. xANR5-MO also blocked elongation of activin-treated animal caps (ACs) and tissue separation. The dorsal cells of xANR5-MO-injected embryos exhibited markedly reduced membrane protrusions, which could be restored by coinjecting active Rho. Active Rho also rescued the xANR5-MO-inhibited tissue separation. We further demonstrated that xANR5 interacted physically and functionally with paraxial protocadherin (PAPC), which has known functions in cell-sorting behavior, tissue separation, and gastrulation cell movements [4-6], to regulate early morphogenesis. Our findings reveal for the first time that xANR5 acts through Rho to regulate gastrulation and is an important cytoplasmic partner of PAPC, whose cytoplasmic partner was previously unknown.  相似文献   

9.
Protocadherins represent the biggest subgroup within the cadherin superfamily of transmembrane glycoproteins. In contrast to classical type I cadherins, protocadherins in general exhibit only moderate adhesive activity. During embryogenesis, they are involved in cell signaling and regulate diverse morphogenetic processes, including morphogenetic movements during gastrulation and neural crest migration. The two protocadherins paraxial protocadherin (PAPC) and axial protocadherin (AXPC) are indispensable for proper gastrulation movements in Xenopus and zebrafish. The closest relative PCNS instead, is required for neural crest and somite formation. Here, we show that cranial neural crest (CNC) cells in addition to PCNS express PAPC, but not AXPC. Overexpression of PAPC resulted in comparable migration defects as knockdown of PCNS. Moreover, reconstitution experiments revealed that PAPC is able to replace PCNS in CNC cells, indicating that both protocadherins can regulate CNC migration. genesis 52:120–126. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Xenopus paraxial protocadherin (PAPC) regulates cadherin-mediated cell adhesion and promotes the planar cell polarity (PCP) pathway. Here we report that PAPC functions in the Xenopus gastrula as an inhibitor of the Wnt/β-catenin pathway. The intracellular domain of PAPC interacts with casein kinase 2 beta (CK2β), which is part of the CK2 holoenzyme. The CK2α/β complex stimulates Wnt/β-catenin signalling, and the physical interaction of CK2β with PAPC antagonizes this activity. By this mechanism, PAPC restricts the expression of Wnt target genes during gastrulation. These experiments identify a novel function of protocadherins as regulators of the Wnt pathway.  相似文献   

11.
Paraxial protocadherin (PAPC) has been shown to be involved in gastrulation cell movements during early embryogenesis. It is first expressed in the dorsal marginal zone at the early gastrula stage and subsequently restricted to the paraxial mesoderm in Xenopus and zebrafish. Using Xenopus embryos, we found that PAPC is also regulated at the protein level and is degraded and excluded from the plasma membrane in the axial mesoderm by the late gastrula stage. Regulation of PAPC requires poly-ubiquitination that is dependent on phosphorylation. PAPC is phosphorylated by GKS3 in the evolutionarily conserved cytoplasmic domain, and this in turn is necessary for poly-ubiquitination by an E3 ubiquitin ligase β-TrCP. We also show that precise control of PAPC by phosphorylation/ubiquitination is essential for normal Xenopus gastrulation cell movements. Taken together, our findings unveil a novel mechanism of regulation of a cell adhesion protein and show that this system plays a crucial role in vertebrate embryogenesis.  相似文献   

12.
The non-canonical WNT/planar cell polarity (WNT/PCP) pathway plays important roles in morphogenetic processes in vertebrates. Among WNT/PCP components, protein tyrosine kinase 7 (PTK7) is a tyrosine kinase receptor with poorly defined functions lacking catalytic activity. Here we show that PTK7 associates with receptor tyrosine kinase-like orphan receptor 2 (ROR2) to form a heterodimeric complex in mammalian cells. We demonstrate that PTK7 and ROR2 physically and functionally interact with the non-canonical WNT5A ligand, leading to JNK activation and cell movements. In the Xenopus embryo, Ptk7 functionally interacts with Ror2 to regulate protocadherin papc expression and morphogenesis. Furthermore, we show that Ptk7 is required for papc activation induced by Wnt5a. Interestingly, we find that Wnt5a stimulates the release of the tagged Ptk7 intracellular domain, which can translocate into the nucleus and activate papc expression. This study reveals novel molecular mechanisms of action of PTK7 in non-canonical WNT/PCP signaling that may promote cell and tissue movements.  相似文献   

13.
14.
Cadherin cell-cell adhesion molecules are important determinants of morphogenesis and tissue patterning. C-cadherin plays a key role in the cell-upon-cell movements seen during Xenopus gastrulation. In particular, regulated changes in C-cadherin adhesion critically influence convergence-extension movements, thereby determining organization of the body plan. It is also predicted that remodelling of cadherin adhesive contacts is important for such cell-on-cell movements to occur. The recent demonstration that Epithelial (E-) cadherin is capable of undergoing endocytic trafficking to and from the cell surface presents a potential mechanism for rapid remodelling of such adhesive contacts. To test the potential role for C-cadherin endocytosis during convergence-extension, we expressed in early Xenopus embryos a dominantly-inhibitory mutant of the GTPase, dynamin, a key regulator of clathrin-mediated endocytosis. We report that this dynamin mutant significantly blocked the elongation of animal cap explants in response to activin, accompanied by inhibition of C-cadherin endocytosis. We propose that dynamin-dependent endocytosis of C-cadherin plays an important role in remodelling adhesive contacts during convergence-extension movements in the early Xenopus embryo.  相似文献   

15.
16.
17.
The signaling mechanisms that specify, guide and coordinate cell behavior during embryonic morphogenesis are poorly understood. We report that a Xenopus homolog of the Drosophila planar cell polarity gene strabismus (stbm) participates in the regulation of convergent extension, a critical morphogenetic process required for the elongation of dorsal structures in vertebrate embryos. Overexpression of Xstbm, which is expressed broadly in early development and subsequently in the nervous system, causes severely shortened trunk structures; a similar phenotype results from inhibiting Xstbm translation using a morpholino antisense oligo. Experiments with Keller explants further demonstrate that Xstbm can regulate convergent extension in both dorsal mesoderm and neural tissue. The specification of dorsal tissues is not affected. The Xstbm phenotype resembles those obtained with several other molecules with roles in planar polarity signaling, including Dishevelled and Frizzled-7 and -8. Unlike these proteins, however, Stbm has little effect on conventional Wnt/beta-catenin signaling in either frog or fly assays. Thus our results strongly support the emerging hypothesis that a vertebrate analog of the planar polarity pathway governs convergent extension movements.  相似文献   

18.
BACKGROUND: Convergence extension movements are conserved tissue rearrangements implicated in multiple morphogenetic events. While many of the cell behaviors involved in convergent extension are known, the molecular interactions required for this process remain elusive. However, past evidence suggests that regulation of cell adhesion molecule function is a key step in the progression of these behaviors. RESULTS: Antibody blocking of fibronectin (FN) adhesion or dominant-negative inhibition of integrin beta 1 function alters cadherin-mediated cell adhesion, promotes cell-sorting behaviors in reaggregation assays, and inhibits medial-lateral cell intercalation and axial extension in gastrulating embryos and explants. Embryo explants were used to demonstrate that normal integrin signaling is required for morphogenetic movements within defined regions but not for cell fate specification. The binding of soluble RGD-containing fragments of fibronectin to integrins promotes the reintegration of dissociated single cells into intact tissues. The changes in adhesion observed are independent of cadherin or integrin expression levels. CONCLUSIONS: We conclude that integrin modulation of cadherin adhesion influences cell intercalation behaviors within boundaries defined by extracellular matrix. We propose that this represents a fundamental mechanism promoting localized cell rearrangements throughout development.  相似文献   

19.
C-cadherin控制非洲爪蛙早期胚胎中微丝骨架的合成   总被引:1,自引:0,他引:1  
上皮细胞间形成的Adherensjunctions复合物通过E—cadherin胞质区段,经由catenin家族蛋白介导,与细胞中微丝骨架系统(micrOfilament)相互作用,参与控制细胞极性、迁移,发育中的形态建成运动以及组织稳态维持等重要生命现象。多方面实验证据表明,cadherin复合物与微丝骨架系统的相互作用是高度动态的;作者前期的工作发现,在非洲爪蛙早期胚胎中,经典cadherin(C-cadherin)在细胞膜上的表达量决定细胞中微丝骨架合成总量。该研究进一步提供实验证据,表明随着囊胚期细胞增殖的进行,囊胚中期以后,细胞表面c—cadherin逐步富集,相应地细胞中微丝骨架的合成量也增加。我们还通过细胞解聚,C-cadherin敲降和过量表达,以及c-cadherin与F-actin共定位分析等实验验证在囊胚期外胚层细胞中,细胞膜C—cadherin表达量与细胞微丝骨架的合成量高度正相关。  相似文献   

20.
Myristoylated alanine-rich C kinase substrate (MARCKS) is an actin-binding, membrane-associated protein expressed during Xenopus embryogenesis. We analyzed its function in cytoskeletal regulation during gastrulation. Here, we show that blockade of its function impaired morphogenetic movements, including convergent extension. MARCKS was required for control of cell morphology, motility, adhesion, protrusive activity, and cortical actin formation in embryonic cells. We also demonstrate that the noncanonical Wnt pathway promotes the formation of lamellipodia- and filopodia-like protrusions and that MARCKS is necessary for this activity. These findings show that MARCKS regulates the cortical actin formation that is requisite for dynamic morphogenetic movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号