首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
To ascertain if lambda VI light chains have unique structural features that account for the preferential association of these proteins with primary or multiple myeloma-related amyloidosis (amyloidosis AL) we have determined the complete amino acid sequence of the variable (V) region of the lambda VI Bence Jones protein SUT. This protein, obtained from a patient with amyloidosis AL, represents a complete light chain consisting of 216 residues and it has structural and serologic properties characteristic for lambda VI light chains. The sequence of the joining segment (J) (positions 100 to 111) of protein SUT is identical to that of the J lambda I segment of the mouse IG lambda light chain gene. V region SUT is closely homologous in sequence to that of another lambda VI amyloid fibrillar protein, AR, differing by 21 residues. The V regions of proteins SUT and AR contain a two-residue insertion at positions 68 and 69 that has also been found in two other lambda VI human light chains but not in the lambda-chains of other V region subgroups.  相似文献   

2.
The myelin associated glycoproteins (MAG) are integral plasma membrane proteins which are found in oligodendrocytes and Schwann cells and are believed to mediate the axonal-glial interactions of myelination. In this paper we demonstrate the existence in central nervous system myelin of two MAG polypeptides with Mrs of 67,000 and 72,000 that we have designated small MAG (S-MAG) and large MAG (L-MAG), respectively. The complete amino acid sequence of L-MAG and a partial amino acid sequence of S-MAG have been deduced from the nucleotide sequences of corresponding cDNA clones isolated from a lambda gt11 rat brain expression library. Based on their amino acid sequences, we predict that both proteins have an identical membrane spanning segment and a large extracellular domain. The putative extracellular region contains an Arg-Gly-Asp sequence that may be involved in the interaction of these proteins with the axon. The extracellular portion of L-MAG also contains five segments of internal homology that resemble immunoglobulin domains, and are strikingly homologous to similar domains of the neural cell adhesion molecule and other members of the immunoglobulin gene superfamily. In addition, the two MAG proteins differ in the extent of their cytoplasmically disposed segments and appear to be the products of alternatively spliced mRNAs. Of considerable interest is the finding that the cytoplasmic domain of L-MAG, but not of S-MAG, contains an amino acid sequence that resembles the autophosphorylation site of the epidermal growth factor receptor.  相似文献   

3.
Mutations in MPZ, the gene encoding myelin protein zero (MPZ), the major protein constituent of peripheral myelin, can cause the adult-onset, inherited neuropathy Charcot-Marie-Tooth disease, as well as the more severe, childhood-onset Dejerine-Sottas neuropathy and congenital hypomyelinating neuropathy. Most MPZ-truncating mutations associated with severe forms of peripheral neuropathy result in premature termination codons within the terminal or penultimate exons that are not subject to nonsense-mediated decay and are stably translated into mutant proteins with potential dominant-negative activity. However, some truncating mutations at the 3' end of MPZ escape the nonsense-mediated decay pathway and cause a mild peripheral neuropathy phenotype. We examined the functional properties of MPZ-truncating proteins that escaped nonsense-mediated decay, and we found that frameshift mutations associated with severe disease cause an intracellular accumulation of mutant proteins, primarily within the endoplasmic reticulum (ER), which induces apoptosis. Curcumin, a chemical compound derived from the curry spice tumeric, releases the ER-retained MPZ mutants into the cytoplasm accompanied by a lower number of apoptotic cells. Our findings suggest that curcumin treatment is sufficient to relieve the toxic effect of mutant aggregation-induced apoptosis and may potentially have a therapeutic role in treating selected forms of inherited peripheral neuropathies.  相似文献   

4.
The Regulator of Chromosome Condensation 1 (RCC1) was identified over 20 years ago as a critical cell cycle regulator. By analyzing its amino acid sequence, RCC1 was found to consist of seven homologous repeats of 51-68 amino acid residues, which were later shown to adopt a seven-bladed beta-propeller fold. Since the initial identification of RCC1, a number of proteins have been discovered that contain one or more RCC1-like domains (RLDs). As we show here, these RCC1 superfamily proteins can be subdivided in five subgroups based on structural criteria. In recent years, a number of studies have been published regarding the functions of RCC1 superfamily proteins. From these studies, the emerging picture is that the RLD is a versatile domain which may perform many different functions, including guanine nucleotide exchange on small GTP-binding proteins, enzyme inhibition or interaction with proteins and lipids. Here, we review the available structural and functional data on RCC1 superfamily members, paying special attention to the human proteins and their involvement in disease.  相似文献   

5.
Proteins exhibit a variety of motions ranging from amino acid side-chain rotations to the motions of large domains. Recognition of their conformational flexibility has led to the view that protein molecules undergo fast dynamic interconversion between different conformational substates. This proposal has received support from a wide variety of experimental techniques and from computer simulations of protein dynamics. More recently, studies of the subunit dissociation of oligomeric proteins induced by hydrostatic pressure have shown that the characteristic times for subunit exchange between oligomers and for interconversion between different conformations may be rather slow (hours or days). In such cases, proteins cannot be treated as an ensemble of rapidly interconverting conformational substates, but rather as a persistently heterogeneous population of different long-lived conformers. This is reminiscent of the deterministic behavior exhibited by macroscopic bodies, and may have important implications for our understanding of protein folding and biological functions. Here, we propose that the deterministic behavior of proteins may be closely related to the genesis of conformational diseases, a class of pathological conditions that includes transmissible spongiform encephalopathies, Alzheimer's disease and other amyloidosis.  相似文献   

6.
Myelin protein zero (MPZ) is the major integral membrane protein of peripheral nerve myelin in higher vertebrates, mediating homoadhesion of the multiple, spiraling wraps of the myelin sheath. Previous studies have shown that full-length MPZ can form dimers and tetramers, and biochemical studies on the extracellular domain (ECD) indicate that it can form a tetramer, albeit very weakly. On the basis of cross-linking studies and equilibrium sedimentation of a transmembrane (TM) domain peptide (MPZ-TM), we find that the MPZ-TM can form homodimers. We further characterized the dimer by measuring the effects of alanine and leucine substitutions on the ability of the TM to dimerize in Escherichia coli membranes. Our results indicate that the primary packing interface for the MPZ TM homodimer is a glycine zipper (GxxxGxxxG) motif. We also find that the G134R mutation, which lies within the glycine zipper packing interface and causes Charcot-Marie-Tooth disease type 1B, severely inhibits dimerization, suggesting that dimerization of the TM domain may be important for the normal functioning of MPZ. By combining our new results with prior work, we suggest a new model for an MPZ lattice that may form during the construction of myelin.  相似文献   

7.
The most common form of systemic amyloidosis originates from antibody light chains. The large number of amino acid variations that distinguish amyloidogenic from nonamyloidogenic light chain proteins has impeded our understanding of the structural basis of light-chain fibril formation. Moreover, even among the subset of human light chains that are amyloidogenic, many primary structure differences are found. We compared the thermodynamic stabilities of two recombinant kappa4 light-chain variable domains (V(L)s) derived from amyloidogenic light chains with a V(L) from a benign light chain. The amyloidogenic V(L)s were significantly less stable than the benign V(L). Furthermore, only the amyloidogenic V(L)s formed fibrils under native conditions in an in vitro fibril formation assay. We used site-directed mutagenesis to examine the consequences of individual amino acid substitutions found in the amyloidogenic V(L)s on stability and fibril formation capability. Both stabilizing and destabilizing mutations were found; however, only destabilizing mutations induced fibril formation in vitro. We found that fibril formation by the benign V(L) could be induced by low concentrations of a denaturant. This indicates that there are no structural or sequence-specific features of the benign V(L) that are incompatible with fibril formation, other than its greater stability. These studies demonstrate that the V(L) beta-domain structure is vulnerable to destabilizing mutations at a number of sites, including complementarity determining regions (CDRs), and that loss of variable domain stability is a major driving force in fibril formation.  相似文献   

8.
Myelin formation during peripheral nervous system development, as well as myelin repair after injury and in disease, requires multiple intrinsic and extrinsic signals. Neurotrophin-4 (NT-4) is a member of the neurotrophin family, which regulates the development of neuronal networks by participating in the growth of neuronal processes, synaptic development and plasticity, neuronal survival, and differentiation. However, the intracellular signaling pathways by which NT-4 participates in myelination by Schwann cells remain elusive. In this study, we examined the effects of NT-4 on the expression of compact myelin proteins in cultured Schwann cells. Using real-time quantitative RT-PCR and western blotting, we found that NT-4 could significantly enhance the expression of myelin protein zero (MPZ) but not the expression of myelin basic protein or peripheral myelin protein 22. Further, knockdown of truncated TrkB with small interfering RNA could eliminate the effect of NT-4 on MPZ expression. Moreover, we demonstrated that the NT-4-enhanced MPZ expression depended on Akt and mTORC1 signaling. Taken together, these results suggest that NT-4 binds TrkB to enhance the expression of MPZ in Schwann cells, probably through the PI3K/Akt/mTORC1 signaling pathway, thus contributing to myelination.  相似文献   

9.
The myelin protein zero gene (MPZ) coding for the most abundant protein of the peripheral myelin was shown to be mutated in Charcot-Marie-Tooth type 1B disease (CMT1B). Later on MPZ mutations have been shown in axonal type of CMT (CMT2). Recently three novel MPZ gene mutations were reported in congenital hypomyelinating neuropathy (CHN). In contrast to the previously reported studies, focused on CMT1B disease, we aimed to analyze the coding and promoter sequences of the MPZ gene in a group of patients with three CMT phenotypes i.e.: CMT1, CMT2 and CHN. Over 500 PCR products were screened by single strand conformation polymorphism analysis (SSCP) and heteroduplex analysis (HA). In one CMT2 family we founded the E56K mutation in the MPZ gene and in one CHN patient the T124K substitution was detected. In agreement with previously reported studies we conclude that MPZ gene screening should be performed for wide phenotype spectrum of CMT.  相似文献   

10.
We have used the occluded surface algorithm to estimate the packing of both buried and exposed amino acid residues in protein structures. This method works equally well for buried residues and solvent-exposed residues in contrast to the commonly used Voronoi method that works directly only on buried residues. The atomic packing of individual globular proteins may vary significantly from the average packing of a large data set of globular proteins. Here, we demonstrate that these variations in protein packing are due to a complex combination of protein size, secondary structure composition and amino acid composition. Differences in protein packing are conserved in protein families of similar structure despite significant sequence differences. This conclusion indicates that quality assessments of packing in protein structures should include a consideration of various parameters including the packing of known homologous proteins. Also, modeling of protein structures based on homologous templates should take into account the packing of the template protein structure.  相似文献   

11.
12.
以植物丝氨酸/苏氨酸蛋白激酶类( serine-threonine kinase,STK)抗病基因产物催化结构域I和Ⅸ的保守氨基酸序列( FGK/V/L/SVYK/RG,DY/IYSF/YGV/I/M)设计简并引物,对甜瓜(Cucumis melo L.)基因组DNA进行PCR扩增,得到大约500 bp的目的条带,通过重组质粒克隆并经PCR检测后得到12条不同的DNA序列,命名为tg1~tg12,其中tg2、tg5、tg9和tg12(Genbank登录号为JN646853 ~JN646856)可以编码完整的氨基酸序列.Blast分析结果显示:4条序列均具有ATP结合部位、底物结合部位和激酶结构域的活化环(A-loop)等,属于典型的蛋白激酶基因家族,可能是STK类R基因的同源序列片段;4条序列与蓖麻(Ricinus communisL.)的STK同源性均较高.氨基酸序列比对结果显示tg2、tg5、tg9和tg12均具有R基因的9个保守结构域,为STK类候选抗病基因类序列.分子系统树显示tg2、tg5、tg9和tg12与已知的R基因(Pto、Lr10和Lectin)在氨基酸水平上的相似性仅为33.5% ~53.4%,且4个甜瓜同源序列的氨基酸相似性也较低,表明甜瓜RGAs标记可能具有较高的特异性.  相似文献   

13.
Mutations in myelin genes cause inherited peripheral neuropathies that range in severity from adult-onset Charcot-Marie-Tooth disease type 1 to childhood-onset Dejerine-Sottas neuropathy and congenital hypomyelinating neuropathy. Many myelin gene mutants that cause severe disease, such as those in the myelin protein zero gene (MPZ) and the peripheral myelin protein 22 gene (PMP22), appear to make aberrant proteins that accumulate primarily within the endoplasmic reticulum (ER), resulting in Schwann cell death by apoptosis and, subsequently, peripheral neuropathy. We previously showed that curcumin supplementation could abrogate ER retention and aggregation-induced apoptosis associated with neuropathy-causing MPZ mutants. We now show reduced apoptosis after curcumin treatment of cells in tissue culture that express PMP22 mutants. Furthermore, we demonstrate that oral administration of curcumin partially mitigates the severe neuropathy phenotype of the Trembler-J mouse model in a dose-dependent manner. Administration of curcumin significantly decreases the percentage of apoptotic Schwann cells and results in increased number and size of myelinated axons in sciatic nerves, leading to improved motor performance. Our findings indicate that curcumin treatment is sufficient to relieve the toxic effect of mutant aggregation-induced apoptosis and improves the neuropathologic phenotype in an animal model of human neuropathy, suggesting a potential therapeutic role in selected forms of inherited peripheral neuropathies.  相似文献   

14.
Transmembrane protein coding genes are commonly associated with human diseases. We characterized disease causing mutations and natural polymorphisms in transmembrane proteins by mapping missense genetic variations from the UniProt database on the transmembrane protein topology listed in the Human Transmembrane Proteome database. We found characteristic differences in the spectrum of amino acid changes within transmembrane regions: in the case of disease associated mutations the non-polar to non-polar and non-polar to charged amino acid changes are equally frequent. In contrast, in the case of natural polymorphisms non-polar to charged amino acid changes are rare while non-polar to non-polar changes are common. The majority of disease associated mutations result in glycine to arginine and leucine to proline substitutions. Mutations to positively charged amino acids are more common in the center of the lipid bilayer, where they cause more severe structural and functional anomalies. Our analysis contributes to the better understanding of the effect of disease associated mutations in transmembrane proteins, which can help prioritize genetic variations in personal genomic investigations.  相似文献   

15.
Mutations in P0 (MPZ), the major myelin protein of the peripheral nervous system, cause the inherited demyelinating neuropathy Charcot-Marie-Tooth disease type 1B. P0 is a member of the immunoglobulin superfamily and functions as a homophilic adhesion molecule. We now show that point mutations in the cytoplasmic domain that modify a PKC target motif (RSTK) or an adjacent serine residue abolish P0 adhesion function and can cause peripheral neuropathy in humans. Consistent with these data, PKCalpha along with the PKC binding protein RACK1 are immunoprecipitated with wild-type P0, and inhibition of PKC activity abolishes P0-mediated adhesion. Point mutations in the RSTK target site that abolish adhesion do not alter the association of PKC with P0; however, deletion of a 14 amino acid region, which includes the RSTK motif, does abolish the association. Thus, the interaction of PKCalpha with the cytoplasmic domain of P0 is independent of specific target residues but is dependent on a nearby sequence. We conclude that PKC-mediated phosphorylation of specific residues within the cytoplasmic domain of P0 is necessary for P0-mediated adhesion, and alteration of this process can cause demyelinating neuropathy in humans.  相似文献   

16.
Rat cellular retinol-binding protein II (CRBP II) is an abundant 134-residue intestinal protein that binds all-trans-retinol and all-trans-retinal. It belongs to a family of homologous, 15-kDa cytoplasmic proteins that bind hydrophobic ligands in a noncovalent fashion. These binding proteins include a number of proteins that bind long chain fatty acids. X-ray analyses of the structure of two family members, rat intestinal fatty acid-binding protein and bovine myelin P2 protein, indicate that they have a high degree of conformational similarity and that the carboxylate group of their bound fatty acid interacts with a delta-guanidium group of at least 1 of 2 "buried" arginine residues. These 2 Arg residues are conserved in other family members that bind long chain fatty acids and in cellular retinoic acid-binding protein, but are replaced by Gln109 and Gln129 in CRBP II. We have genetically engineered two amino acid substitutions in CRBP II: 1) Gln109 to Arg and 2) Gln129 to Arg. The purified Escherichia coli-derived CRBP II mutant proteins were analyzed by fluorescence and nuclear magnetic resonance spectroscopy. Both mutants exhibit markedly decreased binding of all-trans-retinol and all-trans-retinaldehyde, but no increased binding of all-trans-retinoic acid. Arg substitution for Gln109 but not for Gln129 produces a dramatic increase in palmitate binding activity. Analysis of the endogenous fatty acids associated with the purified E. coli-derived proteins revealed that E. coli-derived intestinal fatty acid binding protein and the Arg109 CRBP II mutant are complexed with endogenous fatty acids in a qualitatively and quantitatively similar manner. These results provide evidence that this internal Arg may play an important role in the binding of long chain fatty acids by members of this protein family.  相似文献   

17.
The dynamics of enzyme catalysis range from the slow time scale (~ms) for substrate binding and conformational changes to the fast time (~ps) scale for reorganization of substrates in the chemical step. The contribution of global dynamics to catalysis by alcohol dehydrogenase was tested by substituting five different, conserved amino acid residues that are distal from the active site and located in the hinge region for the conformational change or in hydrophobic clusters. X‐ray crystallography shows that the structures for the G173A, V197I, I220 (V, L, or F), V222I, and F322L enzymes complexed with NAD+ and an analogue of benzyl alcohol are almost identical, except for small perturbations at the sites of substitution. The enzymes have very similar kinetic constants for the oxidation of benzyl alcohol and reduction of benzaldehyde as compared to the wild‐type enzyme, and the rates of conformational changes are not altered. Less conservative substitutions of these amino acid residues, such as G173(V, E, K, or R), V197(G, S, or T), I220(G, S, T, or N), and V222(G, S, or T) produced unstable or poorly expressed proteins, indicating that the residues are critical for global stability. The enzyme scaffold accommodates conservative substitutions of distal residues, and there is no evidence that fast, global dynamics significantly affect the rate constants for hydride transfers. In contrast, other studies show that proximal residues significantly participate in catalysis.  相似文献   

18.
Sixty-nine rat cathepsin L-susceptible peptide bonds were analyzed employing various peptide substrates. The proteolytic specificities of rat cathepsin L and papain were compared and the results are discussed in relation to differences in amino acid residues around their binding sites. The specificity of cathepsin L, which is characterized by a remarkable preference for hydrophobic amino acids at the P2 site of the scissile peptide bonds, was analogous to that of papain as a whole. This analogous specificity suggests that the binding sites of the two proteases are analogous, as expected from their homologous amino acid sequences. However, there is a slight difference in the preference for S3 site between them. That is, cathepsin L showed a greater preference for bulky and hydrophobic amino acids at the S3 site than did papain. Based on the computer-graphically deduced structure of the binding sites of cathepsin L, the preferences for hydrophobic amino acids at the S2 site and for bulky and hydrophobic amino acids at the S3 site of the protease are supposed to be related to the compensating amino acid substitutions at the S2 site (V133A and V157L) and the reduction in size at the S3 site (Y61Q and Y67L), respectively. The discussion of the effect of the amino acid substitutions on the proteolytic activities of cathepsin L and papain in this paper provides a basis for more advanced studies of the relationship between structure and function of proteases belonging to the papain superfamily by means of protein engineering.  相似文献   

19.
The origin of the ability of immunoglobulins (Ig) and T-cell receptors (TCRs) to specifically recognize antigens is related to the evolutionary development of proteins of the immunoglobulin superfamily (IgSF). The IgSF proteins are characterized by specific domain organization of molecules and statistically significant homology with known Ig. Four types of Ig domains (V1, V2, C1, and C2), differing from one another both in variations of their spatial organization and in the number of amino acid residues have been distinguished. Immunoglobulin superfamily comprises Ig; TCRs; class I and II major histocompatibility complex (MHC) molecules; one-domain proteins of thymocytes and T-cells (Thy-1); myelin protein P0; 2-microglobulin; two-domain proteins, such as sponge receptor tyrosine kinase (RTK), sponge adhesive protein (SAP), Drosophila tyrosine-kinase receptor (DTCR), Xenopus and human cortical-thymocyte receptors (CTX and CTH), etc.; and a large group of adhesins, coreceptors, and Ig receptors with varying number of domains. Evolutionary development of IgSF began with the evolvement of chaperones, Thy-1, and P0 of prokaryotes and unicellular eukaryotes. Mutations, duplications, and translocations of the genes controlling both V and C domains yielded proteins with different numbers and combinations of these domains. All IgSF proteins are divided into two groups. The first group includes the proteins with nonrearranging V2 domains and homophilic mode of interaction; the second, the proteins with rearranging V1 domains and heterophilic mode of interaction (Ig, TCRs). The ability for heterophilic antigen-binding mode of interaction was apparently acquired due to the introduction of recombination-activating retroviral genes (RAG1 and RAG2) into the genome of Gnathostomata ancestors.  相似文献   

20.
The ionizable amino acid side chains of proteins are usually located at the surface. However, in some proteins an ionizable group is embedded in an apolar internal region. Such buried ionizable groups destabilize the protein and may trigger conformational changes in response to pH variations. Because of the prohibitive energetic cost of transferring a charged group from water to an apolar medium, other stabilizing factors must be invoked, such as ionization-induced water penetration or structural changes. To examine the role of water penetration, we have measured the 17O and 2H magnetic relaxation dispersions (MRD) for the V66E and V66K mutants of staphylococcal nuclease, where glutamic acid and lysine residues are buried in predominantly apolar environments. At neutral pH, where these residues are uncharged, we find no evidence of buried water molecules near the mutation site. This contrasts with a previous cryogenic crystal structure of the V66E mutant, but is consistent with the room-temperature crystal structure reported here. MRD measurements at different pH values show that ionization of Glu-66 or Lys-66 is not accompanied by penetration of long-lived water molecules. On the other hand, the MRD data are consistent with a local conformational change in response to ionization of the internal residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号