首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc(II) binds to the neuroprotective peptide humanin   总被引:1,自引:0,他引:1  
The abnormal accumulation of the peptide amyloid-beta in the form of senile (or amyloid) plaques is one of the hallmarks of Alzheimer's disease (AD). Zinc ions have been implicated in AD and plaques formation. Recently, the peptide humanin has been discovered. Humanin showed neuroprotective activity against amyloid-beta insults. Here the question investigated is if humanin could interact directly with Zn(II). It is shown that Zn(II) and its substitutes Cd(II)/Co(II) bind to humanin via a thiolate bond from the side chain of the single cysteine at position 8. The low intensity of the d-d bands of Co(II)-humanin indicated an octahedral coordination geometry. Titration experiments suggest that Zn(II) binds to humanin with an apparent affinity in the low muM range. This apparent Zn-binding affinity is in the same order as for amyloid-beta and glutathione and could thus be of physiological relevance.  相似文献   

2.
The NMR solution study of Ser14Gly-humanin (S14G-HN), a 1000-fold more potent derivative of humanin (HN), is reported. HN is 24-residue peptide that selectively suppresses neuronal cell death caused by Alzheimer's disease (AD)-specific insults and offers hope for the development of a cure against AD. In aqueous solution the NMR data show that S14G-HN is a flexible peptide with turn-like structures in its conformational ensemble distributed over an extensive part of its sequence from Pro3 to Glu15. In the more lipophilic environment of 30% TFE, an alpha-helical structure spanning residues Phe6 to Thr13 is identified. Comparison of these findings to the NMR structure of the parent HN and to existing structure-function relationship literature data outlines the important for activity structural features for this class of neuroprotective peptides, and brings forth flexibility as an important characteristic that may facilitate interactions with functional counterparts of the neuroprotection pathway.  相似文献   

3.
Aging is influenced by endocrine pathways including the growth hormone/insulin‐like growth factor‐1 (GH/IGF) axis. Mitochondrial function has also been linked to the aging process, but the relevant mitochondrial signals mediating the effects of mitochondria are poorly understood. Humanin is a novel signaling peptide that acts as a potent regulator of cellular stress responses and protects from a variety of in vitro and in vivo toxic and metabolic insults. The circulating levels of humanin decline with age in mice and humans. Here, we demonstrate a negative correlation between the activity of the GH‐IGF axis and the levels of humanin, as well as a positive correlation between humanin and lifespan in mouse models with altered GH/IGF‐I axis. Long‐lived, GH‐deficient Ames mice displayed elevated humanin levels, while short‐lived GH‐transgenic mice have reduced humanin levels. Furthermore, treatment with GH or IGF‐I reduced circulating humanin levels in both mice and human subjects. Our results indicate that GH and IGF are potent regulators of humanin levels and that humanin levels correlate with lifespan in mice. This suggests that humanin represents a circulating mitochondrial signal that participates in modulating the aging process, adding a coordinated mitochondrial element to the endocrine regulation of aging.  相似文献   

4.
Humanin is a newly identified 24-residue peptide that suppresses neuronal cell death caused by a wide spectrum of familial Alzheimer's disease genes and the beta-amyloid peptide. In this study, NMR and circular dichroism studies of synthetic humanin in aqueous and 30% 2,2,2-trifluoroethanol (TFE) solutions are reported. In aqueous solution, humanin exists predominantly in an unstructured conformation in equilibrium with turn-like structures involving residues Gly5 to Leu10 and Glu15 to Leu18, providing indication of nascent helix. In the less polar environment of 30% TFE, humanin readily adopts helical structure with long-range order spanning residues Gly5 to Leu18. Comparative 3D modeling studies and topology predictions are in qualitative agreement with the experimental findings in both environments. Our studies reveal a flexible peptide in aqueous environment, which is free to interact with possible receptors that mediate its action, but may also acquire a helical conformation necessary for specific interactions and/or passage through membranes.  相似文献   

5.
L1AD3 is a small cyclic synthetic peptide designed to resemble the first loop of a cobra venom cytotoxin. Instead of inducing membrane disruption similar to that caused by the parent toxin, L1AD3 promotes extensive and unusually rapid apoptosis in leukemic T-cells without making the plasma membrane permeable to small fluorescent dyes. Within 4 h, micromolar concentrations of L1AD3 almost totally inhibit thymidine incorporation, and ATP levels decrease significantly. By contrast, normal human white blood cells are not affected by L1AD3, nor is heart cell function affected by it. If L1AD3 kills by interacting with targets that are different from those of currently applied agents, this peptide, or a derivative of it, could become a useful adjunct for cancer chemotherapy.  相似文献   

6.
The aggregation of soluble amyloid‐beta (Aβ) peptide into oligomers/fibrils is one of the key pathological features in Alzheimer's disease (AD). The Aβ aggregates are considered to play a pivotal role in the pathogenesis of AD. Therefore, inhibiting Aβ aggregation and destabilizing preformed Aβ fibrils would be an attractive therapeutic target for prevention and treatment of AD. S14G‐humanin (HNG), a synthetic derivative of Humanin (HN), has been shown to be a strong neuroprotective agent against various AD‐related insults. Recent studies have shown that HNG can significantly improve cognitive deficits and reduce insoluble Aβ levels as well as amyloid plaque burden without affecting amyloid precursor protein processing and Aβ production in transgenic AD models. However, the potential mechanisms by which HNG reduces Aβ‐related pathology in vivo remain obscure. In the present study, we found that HNG could significantly inhibit monomeric Aβ1–42 aggregation into fibrils and destabilize preformed Aβ1–42 fibrils in a concentration‐dependent manner by Thioflavin T fluorescence assay. In transmission electron microscope study, we observed that HNG was effective in inhibiting Aβ1–42 fibril formation and disrupting preformed Aβ1–42 fibrils, exhibiting various types of amorphous aggregates without identifiable Aβ fibrils. Furthermore, HNG‐treated monomeric or fibrillar Aβ1–42 was found to significantly reduce Aβ1–42‐mediated cytotoxic effects on PC12 cells in a dose‐dependent manner by MTT assay. Collectively, our results demonstrate for the first time that HNG not only inhibits Aβ1–42 fibril formation but also disaggregates preformed Aβ1–42 fibrils, which provides the novel evidence that HNG may have anti‐Aβ aggregation and fibrillogenesis, and fibril‐destabilizing properties. Together with previous studies, we concluded that HNG may have promising therapeutic potential as a multitarget agent for the prevention and/or treatment of AD. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Humanine is a human neuroprotective peptide with a wide action spectrum. To analyze molecular mechanisms of humanin functioning, a search for proteins interacting with this peptide was conducted using yeast two-hybrid system. Screening of human fetal brain cDNA library identified seven proteins with different functions that specifically interacted with humanin.  相似文献   

8.
The formyl peptide receptor (FPR) family is involved in host defence against pathogens, but also in sensing internal molecules that may constitute signals of cellular dysfunction. It includes three subtypes in human and other primates. FPR responds to formyl peptides derived from bacterial and mitochondrial proteins. FPRL1 displays a large array of exogenous and endogenous ligands, including the chemokine variant sCKβ8-1, the neuroprotective peptide humanin, and lipoxin A4. Two high affinity agonists (F2L and humanin) were recently described for FPRL2. In mouse, eight FPR-related receptors have been described. Fpr1 is the ortholog of human FPR, while fpr2 appears to share many ligands with human FPRL1. Altogether, the physiological role of the FPR family is still incompletely understood, due in part to the large variety of ligands, the redundancy with other chemoattractant agents, and the lack of clear orthologs between human and mouse receptors. Newly developed tools will allow to study further this family of receptors.  相似文献   

9.
Humanine is a human neuroprotective peptide with a wide action spectrum. To analyze molecular mechanisms of humanin functioning, a search for proteins interacting with this peptide was conducted using yeast two-hybrid system. Screening of human fetal brain cDNA library identified seven proteins with different functions that specifically interacted with humanin.  相似文献   

10.
Humanin and calmodulin‐like skin protein (CLSP) inhibits Alzheimer disease (AD)‐related neuronal cell death via the heterotrimeric humanin receptor in vitro . It has been suggested that CLSP is a central agonist of the heterotrimeric humanin receptor in vivo . To investigate the role of CLSP in the AD pathogenesis in vivo , we generated mouse CLSP‐1 transgenic mice, crossed them with the APPswe/PSEN1dE9 mice, a model mouse of AD, and examined the effect of CLSP over‐expression on the pathological phenotype of the AD mouse model. We found that over‐expression of the mouse CLSP‐1 gene attenuated spatial learning impairment, the loss of a presynaptic marker synaptophysin, and the inactivation of STAT3 in the APPswe/PSEN1dE9 mice. On the other hand, CLSP over‐expression did not affect levels of Aβ, soluble Aβ oligomers, or gliosis. These results suggest that the CLSP‐mediated attenuation of memory impairment and synaptic loss occurs in an Aβ‐independent manner. The results of this study may serve as a hint to the better understanding of the AD pathogenesis and the development of AD therapy.

  相似文献   

11.
Calmodulin‐like skin protein (CLSP) is a secreted peptide that is produced by skin keratinocytes and some related epithelial cells. It has previously been shown that CLSP is recruited via the bloodstream into the central nervous system where it likely exerts a neuroprotective effect against toxicity related to Alzheimer's disease (AD) by binding to the heterotrimeric humanin receptor and activating intracellular survival signaling. However, it remains to be elucidated whether secreted CLSP shows a protective effect in the skin tissues. In the current study, using primary keratinocytes treated with hydrogen peroxide (H2O2) or exposed to ultraviolet (UV) irradiation as senescence models of keratinocytes, we addressed whether CLSP affects senescence in skin keratinocytes. We found that CLSP expression was upregulated by H2O2 or UV in keratinocytes. Furthermore, co‐incubation with recombinant CLSP reduced the increase in senescence‐associated β‐galactosidase‐positivity in keratinocytes that were induced by H2O2 or UV. These results suggest that CLSP may function as a senescence‐suppressing factor in keratinocytes.  相似文献   

12.
目的:探讨妊娠期糖尿病(GDM)孕妇血清皮质醇激素抑制素(CST)、humanin、血管黏附蛋白-1(VAP-1)与糖脂代谢及胰岛素抵抗的关系。方法:选择2017年1月至2019年10月我院妇产科门诊收治的79例GDM患者(GDM组),另选取同期到我院行产检的52例正常妊娠孕妇(NGT组)。检测并比较血清CST、humanin、VAP-1水平,分析CST、humanin、VAP-1与GDM患者糖脂代谢、胰岛素抵抗的相关性,并作二元Logistic回归分析探讨GDM发病的危险因素。结果:GDM组血清CST、humanin、空腹C肽(FC-P)、C-P峰值/FC-P、胰岛素β细胞功能指数[HOMA-β(C-P)]水平低于NGT组(P<0.05),VAP-1、空腹血糖(FPG)、胰岛素抵抗指数[HOMA-IR(C-P)]、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)水平高于NGT组(P<0.05)。Pearson相关性分析结果显示血清CST水平与FPG、HOMA-IR(C-P)呈负相关(P<0.05),与FC-P、C-P峰值/FC-P、HOMA-β(C-P)呈正相关(P<0.05)。humanin水平与TG、FPG、HOMA-IR(C-P)呈负相关,与FC-P、C-P峰值/FC-P、HOMA-β(C-P)呈正相关(P<0.05)。VAP-1与TG、FPG、HOMA-IR(C-P)呈正相关(P<0.05),与FC-P、C-P峰值/FC-P、HOMA-β(C-P)呈负相关(P<0.05)。二元Logistic回归分析结果显示CST、humanin、HOMA-β(C-P)水平降低,年龄、BMI、LDL-C、VAP-1、HOMA-IR(C-P)水平升高是GDM发病的危险因素(P<0.05)。结论:GDM患者血清CST、humanin水平降低,VAP-1水平升高,三者均参与GDM发病和胰岛素抵抗。CST与糖代谢紊乱有关,humanin、VAP-1与糖脂代谢异常有关。  相似文献   

13.
Alzheimer's disease (AD) is hallmarked by amyloid‐β (Aβ) peptides accumulation and aggregation in extracellular plaques, preceded by intracellular accumulation. We examined whether intracellular Aβ can be cleared by cytosolic peptidases and whether this capacity is affected during progression of sporadic AD (sAD) in humans and in the commonly used APPswePS1dE9 and 3xTg‐AD mouse models. A quenched Aβ peptide that becomes fluorescent upon degradation was used to screen for Aβ‐degrading cytoplasmic peptidases cleaving the aggregation‐prone KLVFF region of the peptide. In addition, this quenched peptide was used to analyze Aβ‐degrading capacity in the hippocampus of sAD patients with different Braak stages as well as APPswePS1dE9 and 3xTg‐AD mice. Insulin‐degrading enzyme (IDE) was found to be the main peptidase that degrades cytoplasmic, monomeric Aβ. Oligomerization of Aβ prevents its clearance by IDE. Intriguingly, the Aβ‐degrading capacity decreases already during the earliest Braak stages of sAD, and this decline correlates with IDE protein levels, but not with mRNA levels. This suggests that decreased IDE levels could contribute to early sAD. In contrast to the human data, the commonly used APPswePS1dE9 and 3xTg‐AD mouse models do not show altered Aβ degradation and IDE levels with AD progression, raising doubts whether mouse models that overproduce Aβ peptides are representative for human sAD.  相似文献   

14.
Mitochondria-derived peptides (MDPs) are bioactive peptides encoded by and secreted from the mitochondria. To date, a few MDPs including humanin, MOTS-c and SHLP1–6, and their diverse biological functions have been identified. The first and most studied MDP is humanin, a 24-amino-acid poly peptide. It was first identified in 2001 in the surviving neurons of patient with Alzheimer's disease, and since then has been well characterized for its neuro-protective effect through inhibition of apoptosis. Over the past two decades, humanin has been reported to play critical roles in aging as well as multiple diseases including metabolic disorders, cardiovascular diseases, and autoimmune disease. Humanin has been shown to modulate multiple biological processes including autophagy, ER stress, cellular metabolism, oxidative stress, and inflammation. A role for humanin has been shown in a wide range of cardiovascular diseases, such as coronary heart disease, atherosclerosis, and myocardial fibrosis. In this minireview, we will summarize the literature demonstrating a role for humanin in cardio-protection following myocardial ischemia-reperfusion induced injury and the potential mechanisms that mediate it.  相似文献   

15.
Humanin, a mitochondria-derived peptide, has been found to exert variously protective function in many tissues, especially in the nervous tissues. However, relatively limited studies have focused on the role of humanin in the regulation of reproduction. Current observations indicate that humanin plays an important role in regulating the response of the cell to oxidative stress and apoptosis in ovaries and testes via the modulation of several signaling pathways, especially when the body is in an abnormal state. Even so, the detailed mechanism of humanin function needs to be explored urgently. In this passage, we demonstrate how humanin exerts its protective role in female and male reproduction and raise several questions that need further investigations. Given humanin's new frontier for the design of novel therapeutic approaches for male infertility, male contraception, female infertility, and glucose metabolism in polycystic ovary syndrome, it is worthy of further study on its protective effects and clinical applications in reproductive function  相似文献   

16.
Human leukemic T-lymphocytes undergo extensive and rapid apoptosis in the presence of L1AD3, a small cyclic peptide derivative of cobra cardiotoxin. The first step in this process involves its binding to membranes of susceptible cells. By the use of a biotin "handle" synthetically incorporated at the N-terminus of L1AD3, we show that binding is saturable and selective: normal human peripheral blood lymphocytes do not bind this peptide. Fluorescence resonance energy transfer experiments indicate that the binding sites are separated by at least 55 A. Loss of binding occurs if membrane proteins are enzymatically degraded, suggesting that L1AD3's target is a cell-membrane surface protein receptor. Finally, crosslinking of cyclic BTNL1AD3 peptide to a leukemic T-cell membrane surface receptor, as examined using a biotin-avidin blot, indicated a molecular weight of approximately 34,400.  相似文献   

17.
Onoue S  Endo K  Ohshima K  Yajima T  Kashimoto K 《Peptides》2002,23(8):1471-1478
Pituitary adenylate cyclase activating polypeptide (PACAP) modulates neurotransmission in the central and peripheral nervous systems. In vitro and in vivo studies have shown the protective effects of PACAP against neuronal damage induced by ischemia and agonists of NMDA-type glutamate receptors. Here, we demonstrated that PACAP also protected against neuronal toxicity induced by beta-amyloid (Abeta) peptide, aggregation of which is a causative factor for Alzheimer's disease. PACAP (10(-9)M) rescued 80% of decreased cell viability and 50% of elevated caspase-3 activity that resulted from exposure of PC12 cells to Abeta. PACAP was at least 10(4)-fold more effective than other neuropeptides including vasoactive intestinal peptide (VIP) and humanin, which correlated with the level of cAMP accumulation. Thus, our results suggested that PACAP attenuates Abeta-induced cell death in PC12 cells through an increase in cAMP and that caspase-3 deactivation by PACAP is involved in the signaling pathway for this neuroprotection.  相似文献   

18.
BackgroundHumanin is an endogenous mitochondria-derived peptide that plays critical roles in oxidative stress, inflammation and CAD. In this study, we measured the levels of circulating humanin, markers of oxidative stress and inflammation in patients with unstable angina and MI and studied the relationship between these parameters and major adverse cardiac events (MACE).MethodsA total of 327 subjects were recruited from the inpatient department at First Hospital of Jilin University and divided into 3 groups [control, angina and myocardial infarction (MI)] based on the clinical data and the results of the angiography. Serum humanin and thiobarbituric acid reactive substances (TBARS) were measured at the time of initial admission. The hospitalization data and MACE of all patients were collected.ResultsCirculating humanin levels were lower in the angina group compared to controls [124.22 ± 63.02 vs. 157.77 ± 99.93 pg/ml, p < 0.05] and even lower in MI patients [67.17 ± 24.35 pg/ml, p < 0.05 vs controls] and oxidative stress marker were higher in MI patients compared to the control and angina groups [12.94 ± 4.55 vs. 8.26 ± 1.66 vs. 9.06 ± 2.47 umol/ml, p < 0.05]. Lower circulating humanin levels was an independent risk factor of MI patients. Circulating humanin levels could be used to predict MACE in angina group.ConclusionsLower circulating humanin levels was an independent risk factor for CAD, and a potential prognostic marker for mild CAD.General significanceHumanin may become a new index for the diagnosis and treatment of CAD.  相似文献   

19.
Alzheimer's disease (AD) is a genetically heterogeneous disorder characterized by early hippocampal atrophy and cerebral amyloid-beta (Abeta) peptide deposition. Using TissueInfo to screen for genes preferentially expressed in the hippocampus and located in AD linkage regions, we identified a gene on 10q24.33 that we call CALHM1. We show that CALHM1 encodes a multipass transmembrane glycoprotein that controls cytosolic Ca(2+) concentrations and Abeta levels. CALHM1 homomultimerizes, shares strong sequence similarities with the selectivity filter of the NMDA receptor, and generates a large Ca(2+) conductance across the plasma membrane. Importantly, we determined that the CALHM1 P86L polymorphism (rs2986017) is significantly associated with AD in independent case-control studies of 3404 participants (allele-specific OR = 1.44, p = 2 x 10(-10)). We further found that the P86L polymorphism increases Abeta levels by interfering with CALHM1-mediated Ca(2+) permeability. We propose that CALHM1 encodes an essential component of a previously uncharacterized cerebral Ca(2+) channel that controls Abeta levels and susceptibility to late-onset AD.  相似文献   

20.
Alzheimer's disease (AD) is characterized by Abeta peptide-containing plaques and tau-containing neurofibrillary tangles (NFTs). Both pathologies have been combined by crossing Abeta plaque-forming APP mutant mice with NFT-forming P301L tau mutant mice or by stereotaxically injecting beta-amyloid peptide 1-42 (Abeta42) into brains of P301L tau mutant mice. In cell culture, Abeta42 induces filamentous tau aggregates. To understand which processes are disrupted by Abeta42 in the presence of tau aggregates, we applied comparative proteomics to Abeta42-treated P301L tau-expressing neuroblastoma cells and the amygdala of P301L tau transgenic mice stereotaxically injected with Abeta42. Remarkably, a significant fraction of proteins altered in both systems belonged to the same functional categories, i.e. stress response and metabolism. We also identified model-specific effects of Abeta42 treatment such as differences in cell signaling proteins in the cellular model and of cytoskeletal and synapse associated proteins in the amygdala. By Western blotting (WB) and immunohistochemistry (IHC), we were able to show that 72% of the tested candidates were altered in human AD brain with a major emphasis on stress-related unfolded protein responsive candidates. These data highlight these processes as potentially important initiators in the Abeta42-mediated pathogenic cascade in AD and further support the role of unfolded proteins in the course of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号