首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Real-time RT-PCR has been used widely, both in fundamental research and in clinical diagnostics, for instance for quantification of RNA levels in human tissues and tissue biopsies. In the present study we provide a strategy to validate primers/probes for real-time RT-PCR quantification of baboon samples. The method is based on the TaqMan system and uses primers/probes that have been designed and validated for human real-time RT-PCR. A prerequisite for the accuracy of this strategy is a similar amplification efficiency between human and baboon PCR reactions. We propose two different methods, i.e. by calculating PCR efficiencies from the slope of a dilution curve or by using the linear regression method, to compare the amplification efficiency between human and baboon samples. In conclusion, by performing a simple validation experiment, real-time PCR assays based on human sequences, which are easily available, can be applied for analysis of baboon samples.  相似文献   

2.
旨在了解手足口病的流行和感染情况,并进行快速准确的检测。建立了含非竞争性内标的同时检测肠道病毒通用型、肠道病毒EV71型及柯萨奇病毒CA16型的四重荧光RT-PCR方法,对该方法的特异性、灵敏度等进行评价,并对多份临床样本进行应用检测。结果表明,该检测方法特异性强,对肠道病毒及其他人类非肠道病毒进行检测,显示了良好的特异性;该检测方法对EV71型和CA16型的检测灵敏度分别达到31.25 TCID50和1.25×102TCID50;将浓度为1×104TCID50及5×102TCID50的EV71样本进行重复性试验,其变异系数均小于1.5%;将浓度为5×102-5×105TCID50的EV71和CA16样本进行线性试验,其相关系数R2值在0.982-0.998之间。采用本研究建立的方法检测40份疑似临床样本,最后检出31份肠道病毒阳性样本,其中8例EV71型阳性,13例CA16阳性。另外,试验数据表明,内标对监控PCR抑制物的存在具有重要作用。本方法能同时快速检测所有肠道病毒并进行EV71型及CA16型的分型,并且灵敏度高、特异性好、扩增效率高,由于加入了内标,能有效地监控假阴性的出现,适合于手足口病的临床检测。  相似文献   

3.
Blood group analysis techniques are some of the most in demand immunological applications in clinical transfusion praxis and organ transplantation. In order to aid the advance towards higher throughput and increased sensitivity, analytical solutions dealing with a minimal amount of blood samples and the miniaturization of diagnostic equipment using microchip technologies have been evolving into an optimal solution. Here we review fabrication technologies for various types of microstructure on microchips, related operating procedures, and characterization approaches. Our focus is on examples of microchip technology and instrumentation used for blood group analysis ranging from classical serological methods of glycoprotein detection and solid phase assays, to nucleic acid amplification techniques. Molecular typing using microchip-based techniques is emerging as a supplement to standard serological methods. Microchip technology will play its key role to support blood group analysis at the molecular scale by using microliters of blood samples for extremely sensitive, quantitative, and high throughput analyses.  相似文献   

4.
5.
肉类掺假现象严重威胁公共卫生安全。快速、准确、可靠的动物源性成分检测技术是有效监管与检测肉类掺假的关键。总结了常见的掺假形式,并对物理技术、光谱技术、免疫学技术、DNA分析等检测方法进行了全面的总结归纳和比较分析,尤其是对当前热门的DNA分析方法,详细阐述了常规PCR、实时荧光定量PCR、数字PCR和等温扩增PCR这4种主要分子检测技术的优缺点和应用情况,旨在为未来动物源性检测技术的发展指明方向。  相似文献   

6.
Rapid-cycle PCR uses fast temperature transitions and minimal denaturation and annealing times of "0" s to complete 30 cycles in 10 to 30 min. The most popular platform amplifies samples in glass capillaries arranged around a carousel with circulating air for temperature control. Recently, plastic capillary replacements for glass capillaries became available. We compared the performance of plastic and glass capillaries for rapid-cycle PCR. Heat transfer into plastic capillaries was slowed by thicker walls, lower thermal conductivity, and a lower surface area-to-volume ratio than glass capillaries. Whereas the denaturation and annealing target temperatures were reached by samples in glass capillaries, samples in plastic capillaries fell short of these target temperatures by 6 degrees -7 degrees C. Rapid-cycle PCR was performed on two human genomic targets (APOE and ACVRL1) and one plasmid (pBR322) to amplify fragments of 225-300 bp in length with melting temperatures of 90.3 degrees -93.1 degrees C. Real-time amplification data, end-point melting curves, and end-point gel analysis revealed strong, specific amplification of samples in glass and complete amplification failure in plastic. Only the APOE target was successfully amplified by extending the denaturation and annealing times to 5 or 10 s. A 20 s holding period was necessary to reach target temperatures in plastic capillaries.  相似文献   

7.
Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.  相似文献   

8.
The application of molecular DNA technologies to anthropological questions has meant that rare or archival samples of human remains, including blood, hair, and bone, can now be used as a source of material for genetic analysis. Often, these samples are irreplaceable, and/or yield very small quantities of DNA, so methods for preamplifying as much of the whole genome as possible would greatly enhance their usefulness. DOP-PCR (degenerate oligonucleotide-primed polymerase chain reaction) is an amplification method that uses a degenerate primer and very low initial annealing temperatures to amplify the whole genome. We adapted a published DOP-PCR protocol to long PCR enzyme and amplification conditions. The effectiveness of these modifications was tested by PCR amplification of DOP-PCR products at a mixture of genomic targets including 66 different microsatellites, 11 Alu insertion polymorphisms, and variable-length segments of the human lipoprotein lipase gene (LPL). The selected microsatellite markers were chosen to represent every chromosome, with expected product sizes ranging from 150 base pairs to 8,000 base pairs in length, while the 22 Alu insertion polymorphisms were selected to reveal biases in the recovery of alleles of different sizes. To determine nucleotide sequence variation, 2 kilobases (kb) of the LPL gene in 30 Mongolian individuals were sequenced. All gene-specific targets from DOP-PCR product template were amplified. No unexpected polymorphisms in the sequence results attributable to the DOP-PCR step were found, and 93% to 95% of Alu genotypes that have been amplified from total genomic DNA were replicated. The incorrect typings were all due to the preferential amplification of the shorter of two possible alleles in individuals heterozygous for an Alu insertion and were all correctly typed on subsequent reamplification of the gene-specific PCR products. This method of whole-genome amplification promises to be an efficient way to maximize the genetic use of rare anthropological samples.  相似文献   

9.
Real-time polymerase chain reaction (qPCR) is the cornerstone of DNA analysis, enabling detection and quantification of minute nucleic acid amounts. However, PCR-based analysis is limited, in part, by the presence of inhibitors in the samples. PCR inhibition has been viewed solely as failure to efficiently generate amplicons, that is, amplification inhibition. Humic substances (HS) are well-known inhibitors of PCR amplification. Here we show that HS from environmental samples, specifically humic acid (HA), are very potent detection inhibitors, that is, quench the fluorescence signal of double-stranded DNA (dsDNA) binding dyes. HA quenched the fluorescence of the commonly used qPCR dyes EvaGreen, ResoLight, SYBR Green I, and SYTO 82, generating lowered amplification plots, although amplicon production was unaffected. For EvaGreen, 500 ng of HA quenched nearly all fluorescence, whereas 1000 ng of HA completely inhibited amplification when applying Immolase DNA polymerase with bovine serum albumin (BSA). Fluorescence spectroscopy measurements showed that HA quenching was either static or collisional and indicated that HA bound directly to the dye. Fulvic acid did not act as a qPCR detection inhibitor but inhibited amplification similarly to HA. Hydrolysis probe fluorescence was not quenched by HA. Detection inhibition is an overlooked phenomenon that needs to be considered to allow for development of optimal qPCR assays.  相似文献   

10.
Real-time PCR quantification of precursor and mature microRNA   总被引:9,自引:0,他引:9  
microRNAs (miRNAs) are challenging molecules to amplify by PCR because the miRNA precursor consists of a stable hairpin and the mature miRNA is roughly the size of a standard PCR primer. Despite these difficulties, successful real-time RT-PCR technologies have been developed to amplify and quantify both the precursor and mature microRNA. An overview of real-time PCR technologies developed by us to detect precursor and mature microRNAs is presented here. Protocols describe presentation of the data using relative (comparative C(T)) and absolute (standard curve) quantification. Real-time PCR assays were used to measure the time course of precursor and mature miR-155 expression in monocytes stimulated by lipopolysaccharide. Protocols are provided to configure the assays as low density PCR arrays for high throughput gene expression profiling. By profiling over 200 precursor and mature miRNAs in HL60 cells induced to differentiate with 12-O-tetradecanoylphorbol-13-acetate, it was possible to identify miRNAs who's processing is regulated during differentiation. Real-time PCR has become the gold standard of nucleic acid quantification due to the specificity and sensitivity of the PCR. Technological advancements have allowed for quantification of miRNA that is of comparable quality to more traditional RNAs.  相似文献   

11.
PCR技术检测猪肺炎支原体的研究进展   总被引:1,自引:0,他引:1  
猪肺炎支原体(Mycopiasma hyopneumoniae)是引起猪支原体肺炎的重要病原,该病常引起继发感染和混合感染,严重威胁养猪业发展,造成巨大的经济损失.利用PCR技术对猪支原体肺炎早期正确诊断具有非常重要的意义.从猪肺炎支原体的特异性靶基因、临床样品采集方法与样品DNA处理方法、关键技术因素及普通PCR技术、多重PCR技术、套式PCR技术、荧光定量PCR技术、芯片检测和环介导等温扩增技术等在猪肺炎支原体检测中的研究进展、主要优缺点及应用进行综述.  相似文献   

12.
Short tandem repeat typing technologies used in human identity testing   总被引:2,自引:0,他引:2  
Butler JM 《BioTechniques》2007,43(4):ii-iv
Short tandem repeat (STR) typing methods are widely used today for human identity testing applications including forensic DNA analysis. Following multiplex PCR amplification, DNA samples containing the length-variant STR alleles are typically separated by capillary electrophoresis and genotyped by comparison to an allelic ladder supplied with a commercial kit. This article offers a brief perspective on the technologies and issues involved in STR typing.  相似文献   

13.
为建立检测法夫酵母JMU-MVP14中虾青素合成相关基因在不同生长时期表达水平的实时定量PCR方法,构建法夫酵母JMU-MVP14的管家基因β-actin、gpd、18S rRNA的标准质粒,进行实时定量PCR,制作标准曲线及回归方程.β-actin基因标准曲线相关系数(R2)=0.9956,扩增效率(E) =96.93%;gpd基因标准曲线相关系数(R2) =0.9901,扩增效率(E) =93.78%;18S rRNA基因标准曲线相关系数(R2) =0.9981,扩增效率(E)=98.76%.3个基因片段的熔解曲线均呈单峰;扩增曲线呈典型的S型动力学曲线,指数期和平台期明显,为理想的熔解曲线和扩增曲线.用geNorm软件对三个管家基因的稳定性进行分析,三个基因的稳定性排序为β-actin> 18S rRNA> gpd,故β-actin和18S rRNA较适合作为研究法夫酵母JMU-MVP14定量实验的内参基因.  相似文献   

14.
Kinetic Outlier Detection (KOD) in real-time PCR   总被引:8,自引:1,他引:7       下载免费PDF全文
Real-time PCR is becoming the method of choice for precise quantification of minute amounts of nucleic acids. For proper comparison of samples, almost all quantification methods assume similar PCR efficiencies in the exponential phase of the reaction. However, inhibition of PCR is common when working with biological samples and may invalidate the assumed similarity of PCR efficiencies. Here we present a statistical method, Kinetic Outlier Detection (KOD), to detect samples with dissimilar efficiencies. KOD is based on a comparison of PCR efficiency, estimated from the amplification curve of a test sample, with the mean PCR efficiency of samples in a training set. KOD is demonstrated and validated on samples with the same initial number of template molecules, where PCR is inhibited to various degrees by elevated concentrations of dNTP; and in detection of cDNA samples with an aberrant ratio of two genes. Translating the dissimilarity in efficiency to quantity, KOD identifies outliers that differ by 1.3–1.9-fold in their quantity from normal samples with a P-value of 0.05. This precision is higher than the minimal 2-fold difference in number of DNA molecules that real-time PCR usually aims to detect. Thus, KOD may be a useful tool for outlier detection in real-time PCR.  相似文献   

15.
Phaeomoniella chlamydospora and Phaeoacremonium aleophilum are the two main fungal causal agents of Petri disease and esca. Both diseases cause significant economic losses to viticulturalists. Since no curative control measures are known, proactive defensive measures must be taken. An important aspect of current research is the development of sensitive and time-saving protocols for the detection and identification of these pathogens. Real-time PCR based on the amplification of specific sequences is now being used for the identification and quantification of many infective agents. The present work reports real-time PCR protocols for identification of P. chlamydospora and P. aleophilum. Specificity was demonstrated against purified DNA from 60 P. chlamydospora isolates or 61 P. aleophilum isolates, and no amplification was obtained with 54 nontarget DNAs. The limits of detection (i.e., DNA detectable in 95% of reactions) were around 100 fg for P. chlamydospora and 50 fg for P. aleophilum. Detection was specific and sensitive for P. chlamydospora and P. aleophilum. Spores of P. chlamydospora and P. aleophilum were detected without the need for DNA purification. The established protocols detected these fungi in wood samples after DNA purification. P. chlamydospora was detectable without DNA purification and isolation in 67% of reactions. The detection of these pathogens in wood samples has great potential for use in pathogen-free certification schemes.  相似文献   

16.
17.
Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.  相似文献   

18.
DNA microarray-based screening and diagnostic technologies have long promised comprehensive testing capabilities. However, the potential of these powerful tools has been limited by front-end target-specific nucleic acid amplification. Despite the sensitivity and specificity associated with PCR amplification, the inherent bias and limited throughput of this approach constrain the principal benefits of downstream microarray-based applications, especially for pathogen detection. To begin addressing alternative approaches, we investigated four front-end amplification strategies: random primed, isothermal Klenow fragment-based, phi29 DNA polymerase-based, and multiplex PCR. The utility of each amplification strategy was assessed by hybridizing amplicons to microarrays consisting of 70-mer oligonucleotide probes specific for enterohemorrhagic Escherichia coli O157:H7 and by quantitating their sensitivities for the detection of O157:H7 in laboratory and environmental samples. Although nearly identical levels of hybridization specificity were achieved for each method, multiplex PCR was at least 3 orders of magnitude more sensitive than any individual random amplification approach. However, the use of Klenow-plus-Klenow and phi29 polymerase-plus-Klenow tandem random amplification strategies provided better sensitivities than multiplex PCR. In addition, amplification biases among the five genetic loci tested were 2- to 20-fold for the random approaches, in contrast to >4 orders of magnitude for multiplex PCR. The same random amplification strategies were also able to detect all five diagnostic targets in a spiked environmental water sample that contained a 63-fold excess of contaminating DNA. The results presented here underscore the feasibility of using random amplification approaches and begin to systematically address the versatility of these approaches for unbiased pathogen detection from environmental sources.  相似文献   

19.
For detection of Brucella species by PCR four DNA extraction methods and four targets were compared using pure culture of Brucella melitensis and the best conditions were applied in clinical samples. It was found that the MagNA Pure LC method was the most efficient and sensitive method showing a positive PCR reaction with DNA extracted from as low as 25 and 100 CFU suspended in one ml blood and one ml water, respectively. Detection of Brucella spp. by conventional PCR was investigated using four different targets. The results indicated that The B4-B5 amplification method was the most sensitive one as it could amplify DNA extracted from as a low as 25 and 100 CFU/ml suspended in one ml water and blood, respectively. Furthermore real-time PCR was able to detect Brucella using DNA extracted from as low as 50 CFU/ml blood and 15 CFU/ml water, respectively. The best and optimum detection conditions were applied to the clinical samples. Evaluation of conventional PCR assays on blood specimens confirmed 72% of the results obtained by conventional blood culture methods with a specificity of 95%, while serum samples had a sensitivity of 54% and specificity of 100%. Real-time PCR was generally found to be more sensitive and specific for detecting Brucella spp. in blood and serum samples compared to conventional PCR. The real-time PCR done on blood specimens confirmed 77.5% of the results obtained by conventional blood culture methods with specificity of 100%, while 60% of serum samples were found to be positive with specificity of 100%. These results suggest that serum and blood analysis by conventional and real time PCR is a convenient and safe method for rapid and accurate diagnosis of brucellosis.  相似文献   

20.
Our abilities to detect and enumerate pollutant-biodegrading microorganisms in the environment are rapidly advancing with the development of molecular genetic techniques. Techniques based on multiplex and real-time PCR amplification of aromatic oxygenase genes were developed to detect and quantify aromatic catabolic pathways, respectively. PCR primer sets were identified for the large subunits of aromatic oxygenases from alignments of known gene sequences and tested with genetically well-characterized strains. In all, primer sets which allowed amplification of naphthalene dioxygenase, biphenyl dioxygenase, toluene dioxygenase, xylene monooxygenase, phenol monooxygenase, and ring-hydroxylating toluene monooxygenase genes were identified. For each primer set, the length of the observed amplification product matched the length predicted from published sequences, and specificity was confirmed by hybridization. Primer sets were grouped according to the annealing temperature for multiplex PCR permitting simultaneous detection of various genotypes responsible for aromatic hydrocarbon biodegradation. Real-time PCR using SYBR green I was employed with the individual primer sets to determine the gene copy number. Optimum polymerization temperatures for real-time PCR were determined on the basis of the observed melting temperatures of the desired products. When a polymerization temperature of 4 to 5 degrees C below the melting temperature was used, background fluorescence signals were greatly reduced, allowing detection limits of 2 x 10(2) copies per reaction mixture. Improved in situ microbial characterization will provide more accurate assessment of pollutant biodegradation, enhance studies of the ecology of contaminated sites, and facilitate assessment of the impact of remediation technologies on indigenous microbial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号