首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interleukin-1 (IL-1) stimulation leads to the recruitment of interleukin-1 receptor-associated kinase (IRAK) to the IL-1 receptor, where IRAK is phosphorylated, ubiquitinated, and eventually degraded. Kinase-inactive mutant IRAK is still phosphorylated in response to IL-1 stimulation when it is transfected into IRAK-deficient cells, suggesting that there must be an IRAK kinase in the pathway. The fact that IRAK4, another IRAK family member necessary for the IL-1 pathway, is able to phosphorylate IRAK in vitro suggests that IRAK4 might be the IRAK kinase. However, we now found that the IRAK4 kinase-inactive mutant had the same ability as the wild-type IRAK4 in restoring IL-1-mediated signaling in human IRAK4-deficient cells, including NFkappaB-dependent reporter gene expression, the activation of NFkappaB and JNK, and endogenous IL-8 gene expression. These results strongly indicate that the kinase activity of human IRAK4 is not necessary for IL-1 signaling. Furthermore, we showed that the kinase activity of IRAK4 was not necessary for IL-1-induced IRAK phosphorylation, suggesting that IRAK phosphorylation can probably be achieved either by autophosphorylation or by trans-phosphorylation through IRAK4. In support of this, only the impairment of the kinase activity of both IRAK and IRAK4 efficiently abolished the IL-1 pathway, demonstrating that the kinase activity of IRAK and IRAK4 is redundant for IL-1-mediated signaling. Moreover, consistent with the fact that IRAK4 is a necessary component of the IL-1 pathway, we found that IRAK4 was required for the efficient recruitment of IRAK to the IL-1 receptor complex.  相似文献   

2.
Characterization of Pellino2, a substrate of IRAK1 and IRAK4   总被引:3,自引:0,他引:3  
Strelow A  Kollewe C  Wesche H 《FEBS letters》2003,547(1-3):157-161
  相似文献   

3.
4.
A member of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) family was identified in Drosophila. DTRAF1 contains 7 zinc finger domains followed by a TRAF domain, similar to mammalian TRAFs and other members of the family identified in data bases from Caenorhabditis elegans, Arabidopsis, and Dictyostelium. Analysis of DTRAF1 binding to different members of the human TNF receptor family showed that this protein can interact through its TRAF domain with the p75 neurotrophin receptor and weakly with the lymphotoxin-beta receptor. DTRAF1 can also self-associate and binds to human TRAF1, TRAF2, and TRAF4. Interestingly, DTRAF1 interacts with human cIAP-1 and cIAP-2 but not with Drosophila DIAP-1 and -2. By itself, DTRAF1 did not induce significant NFkappaB activation when overexpressed in mammalian cells, although it specifically increased NFkappaB induction by TRAF6. In contrast, TRAF2-mediated NFkappaB induction was partially inhibited by DTRAF1. Mutants of DTRAF1 lacking the N-terminal region inhibited NFkappaB induction by either TRAF2 or TRAF6. DTRAF1 specifically associated with the regulatory N-terminal domain of Pelle, a Drosophila homolog of the human kinase interleukin-1 receptor-associated kinase (IRAK). Interestingly, though Pelle and DTRAF1 individually were unable to induce NFkappaB in a human cell line, co-expression of Pelle and DTRAF1 resulted in significant NFkappaB activity. Interactions of DTRAF1 with human TRAF-, TNF receptor-, and IAP-family proteins imply strong evolutionary conservation of TRAF protein structure and function throughout Metazoan evolution.  相似文献   

5.
6.
IL-1 receptor-associated kinase modulates host responsiveness to endotoxin   总被引:19,自引:0,他引:19  
Endotoxin triggers many of the inflammatory, hemodynamic, and hematological derangements of Gram-negative septic shock. Recent genetic studies in mice have identified the Toll-like receptor 4 as the transmembrane endotoxin signal transducer. The IL-1 intracellular signaling pathway has been implicated in Toll-like receptor signal transduction. LPS-induced activation of the IL-1 receptor-associated kinase (IRAK), and the influence of IRAK on intracellular signaling and cellular responses to endotoxin has not been explored in relevant innate immune cells. We demonstrate that LPS activates IRAK in murine macrophages. IRAK-deficient macrophages, in contrast, are resistant to LPS. Deletion of IRAK disrupts several endotoxin-triggered signaling cascades. Furthermore, macrophages lacking IRAK exhibit impaired LPS-stimulated TNF-alpha production, and IRAK-deficient mice withstand the lethal effects of LPS. These findings, coupled with the critical role for IRAK in IL-1 and IL-18 signal transduction, demonstrate the importance of this kinase and the IL-1/Toll signaling cassette in sensing and responding to Gram-negative infection.  相似文献   

7.
Interleukin-1 (IL-1) is a proinflammatory cytokine that recognizes a surface receptor complex and generates multiple cellular responses. IL-1 stimulation activates the mitogen-activated protein kinase kinase kinase TAK1, which in turn mediates activation of c-Jun N-terminal kinase and NF-kappaB. TAB2 has previously been shown to interact with both TAK1 and TRAF6 and promote their association, thereby triggering subsequent IL-1 signaling events. The serine/threonine kinase IL-1 receptor-associated kinase (IRAK) also plays a role in IL-1 signaling, being recruited to the IL-1 receptor complex early in the signal cascade. In this report, we investigate the role of IRAK in the activation of TAK1. Genetic analysis reveals that IRAK is required for IL-1-induced activation of TAK1. We show that IL-1 stimulation induces the rapid but transient association of IRAK, TRAF6, TAB2, and TAK1. TAB2 is recruited to this complex following translocation from the membrane to the cytosol upon IL-1 stimulation. In IRAK-deficient cells, TAB2 translocation and its association with TRAF6 are abolished. These results suggest that IRAK regulates the redistribution of TAB2 upon IL-1 stimulation and facilitates the formation of a TRAF6-TAB2-TAK1 complex. Formation of this complex is an essential step in the activation of TAK1 in the IL-1 signaling pathway.  相似文献   

8.
Recent studies show that a member of the interleukin-1 (IL-1)/Toll receptor superfamily, Toll-like receptor 3 (TLR3), recognizes double-stranded RNA (dsRNA). Because of the similarity in their cytoplasmic domains, IL-1/Toll receptors share signaling components that associate with the IL-1 receptor, including IL-1 receptor-associated kinase (IRAK), MyD88, and TRAF6. However, we find that, in response to dsRNA, TLR3 can mediate the activation of both NFkappaB and mitogen-activated protein (MAP) kinases in IL-1-unresponsive mutant cell lines, including IRAK-deficient I1A and I3A cells, which are defective in a component that is downstream of IL-1R but upstream of IRAK. These results clearly indicate that TLR3 does not simply share the signaling components employed by the IL-1 receptor. Through biochemical analyses we have identified an IRAK-independent TLR3-mediated pathway. Upon binding of dsRNA to TLR3, TRAF6, TAK1, and TAB2 are recruited to the receptor to form a complex, which then translocates to the cytosol where TAK1 is phosphorylated and activated. The dsRNA-dependent protein kinase (PKR) is also detected in this signal-induced TAK1 complex. Kinase inactive mutants of TAK1 (TAK1DN) and PKR (PKRDN) inhibit poly(dI.dC)-induced TLR3-mediated NFkappaB activation, suggesting that both of these kinases play important roles in this pathway.  相似文献   

9.
The interleukin-1 (IL-1) receptor-associated kinase 1 (IRAK1) is a member of the IRAK kinase family that plays a pivotal role in the Toll/IL-1 receptor (TIR) family signaling cascade. We have identified a novel splice variant, IRAK1c, which lacks a region encoded by exon 11 of the IRAK1 gene. IRAK1c expression was confirmed by both RNA and protein detection. Although both IRAK1 and IRAK1c are expressed in most tissues tested, IRAK1c is the predominant form of IRAK1 expressed in the brain. Unlike IRAK1, IRAK1c lacks kinase activity and cannot be phosphorylated by IRAK4. However, IRAK1c retains the ability to strongly interact with IRAK2, MyD88, Tollip, and TRAF6. Overexpression of IRAK1c suppressed NF-kappaB activation and blocked IL-1beta-induced IL-6 as well as lipopolysaccharide- and CpG-induced tumor necrosis factor alpha production in multiple cellular systems. Mechanistically, we provide evidence that IRAK1c functions as a dominant negative by failing to be phosphorylated by IRAK4, thus remaining associated with Tollip and blocking NF-kappaB activation. The presence of a regulated, alternative splice variant of IRAK1 that functions as a kinase-dead, dominant-negative protein adds further complexity to the variety of mechanisms that regulate TIR signaling and the subsequent inflammatory response.  相似文献   

10.
11.
Infections often precede the development of autoimmunity. Correlation between infection with a specific pathogen and a particular autoimmune disease ranges from moderately strong to quite weak. This lack of correspondence suggests that autoimmunity may result from microbial activation of a generic, as opposed to pathogen-specific host-defense response. The Toll-like receptors, essential to host recognition of microbial invasion, signal through a common, highly conserved pathway, activate innate immunity, and control adaptive immune responses. To determine the influence of Toll/IL-1 signaling on the development of autoimmunity, the responses of wild-type (WT) mice and IL-1R-associated kinase 1 (IRAK1)-deficient mice to induction of experimental autoimmune encephalomyelitis were compared. C57BL/6 and B6.IRAK1-deficient mice were immunized with MOG 35-55/CFA or MOG 35-55/CpG DNA/IFA. WT animals developed severe disease, whereas IRAK1-deficient mice were resistant to experimental autoimmune encephalomyelitis, exhibiting little or no CNS inflammation. IRAK1-deficient T cells also displayed impaired Th1 development, particularly during disease induction, despite normal TCR signaling. These results suggest that IRAK1 and the Toll/IL-1 pathway play an essential role in T cell priming, and demonstrate one means through which innate immunity can control subsequent development of autoimmunity. These findings may also help explain the association between antecedent infection and the development or exacerbations of some autoimmune diseases.  相似文献   

12.
IL-1 receptor-associated kinase (IRAK) is phosphorylated, ubiquitinated, and degraded upon interleukin-1 (IL-1) stimulation. In this study, we showed that IRAK can be ubiquitinated through both Lys-48- and Lys-63-linked polyubiquitin chains upon IL-1 induction. Pellino 3b is the RING-like motif ubiquitin protein ligase that promotes the Lys-63-linked polyubiquitination on IRAK. Pellino 3b-mediated Lys-63-linked IRAK polyubiquitination competed with Lys-48-linked IRAK polyubiquitination for the same ubiquitination site, Lys-134 of IRAK, thereby blocking IL-1-induced IRAK degradation. Importantly, the negative impact of Pellino 3b on IL-1-induced IRAK degradation correlated with the inhibitory effect of Pellino 3b on the IL-1-induced TAK1-dependent pathway, suggesting that a positive role of IRAK degradation in IL-1 induced TAK1 activation. Taken together, our results suggest that Pellino 3b acts as a negative regulator for IL-1 signaling by regulating IRAK degradation through its ubiquitin protein ligase activity.  相似文献   

13.
The E3 ubiquitin ligase Pellino 1 can be interconverted between inactive and active forms by a reversible phosphorylation mechanism. In vitro, phosphorylation and activation can be catalysed by either the IRAKs [IL (interleukin)-1-receptor-associated kinases] IRAK1 and IRAK4, or the IKK {IκB [inhibitor of NF-κB (nuclear factor κB)] kinase}-related kinases [IKK? and TBK1 (TANK {TRAF [TNF (tumour-necrosis-factor)-receptor-associated factor]-associated NF-κB activator}-binding kinase 1)]. In the present study we establish that IRAK1 is the major protein kinase that mediates the IL-1-stimulated activation of Pellino 1 in MEFs (mouse embryonic fibroblasts) or HEK (human embryonic kidney)-293 cells, whereas the IKK-related kinases activate Pellino 1 in TNFα-stimulated MEFs. The IKK-related kinases are also the major protein kinases that activate Pellino 1 in response to TLR (Toll-like receptor) ligands that signal via the adaptors MyD88 (myeloid differentiation primary response gene 88) and/or TRIF [TIR (Toll/IL-1 receptor) domain-containing adaptor protein inducing interferon β]. The present studies demonstrate that, surprisingly, the ligands that signal via MyD88 do not always employ the same protein kinase to activate Pellino 1. Our results also establish that neither the catalytic activity of IRAK1 nor the activation of Pellino 1 is required for the initial transient activation of NF-κB and MAPKs (mitogen-activated protein kinases) that is triggered by IL-1 or TNFα in MEFs, or by TLR ligands in macrophages. The activation of Pellino 1 provides the first direct readout for IRAK1 catalytic activity in cells.  相似文献   

14.
15.
Interleukin-1 (IL-1) receptor-associated kinase (IRAK) plays an important role in the sequential formation and activation of IL-1-induced signaling complexes. Previous studies showed that IRAK is recruited to the IL-1-receptor complex, where it is hyperphosphorylated. We now find that the phosphorylated IRAK in turn recruits TRAF6 to the receptor complex (complex I), which differs from the previous concept that IRAK interacts with TRAF6 after it leaves the receptor. IRAK then brings TRAF6 to TAK1, TAB1, and TAB2, which are preassociated on the membrane before stimulation to form the membrane-associated complex II. The formation of complex II leads to the phosphorylation of TAK1 and TAB2 on the membrane by an unknown kinase, followed by the dissociation of TRAF6-TAK1-TAB1-TAB2 (complex III) from IRAK and consequent translocation of complex III to the cytosol. The formation of complex III and its interaction with additional cytosolic factors lead to the activation of TAK1, resulting in NF-kappaB and JNK activation. Phosphorylated IRAK remains on the membrane and eventually is ubiquitinated and degraded. Taken together, the new data reveal that IRAK plays a critical role in mediating the association and dissociation of IL-1-induced signaling complexes, functioning as an organizer and transporter in IL-1-dependent signaling.  相似文献   

16.
Tumor necrosis factor receptor-associated factor 6 (TRAF6) transduces signals from members of the Toll/interleukin-1 (IL-1) receptor family by interacting with IL-1 receptor-associated kinase-1 (IRAK-1) after IRAK-1 is released from the receptor-MyD88 complex upon IL-1 stimulation. However, the molecular mechanisms underlying regulation of the IRAK-1/TRAF6 interaction are largely unknown. We have identified TIFA, a TRAF-interacting protein with a forkhead-associated (FHA) domain. The FHA domain is a motif known to bind directly to phosphothreonine and phosphoserine. In transient transfection assays, TIFA activates NFkappaBeta and c-Jun amino-terminal kinase. However, TIFA carrying a mutation that abolishes TRAF6 binding or mutations in the FHA domain that are known to abolish FHA domain binding to phosphopeptide fails to activate NFkappaBeta and c-Jun amino-terminal kinase. TIFA, when overexpressed, binds both TRAF6 and IRAK-1 and significantly enhances the IRAK-1/TRAF6 interaction. Furthermore, analysis of endogenous proteins indicates that TIFA associates with TRAF6 constitutively, whereas it associates with IRAK-1 in an IL-1 stimulation-dependent manner in vivo. Thus, TIFA is likely to mediate IRAK-1/TRAF6 interaction upon IL-1 stimulation.  相似文献   

17.
Two parallel interleukin-1 (IL-1)-mediated signaling pathways have been uncovered for IL-1R-TLR-mediated NFkappaB activation: TAK1-dependent and MEKK3-dependent pathways, respectively. The TAK1-dependent pathway leads to IKKalpha/beta phosphorylation and IKKbeta activation, resulting in classic NFkappaB activation through IkappaBalpha phosphorylation and degradation. The TAK1-independent MEKK3-dependent pathway involves IKKgamma phosphorylation and IKKalpha activation, resulting in NFkappaB activation through dissociation of phosphorylated IkappaBalpha from NFkappaB without IkappaBalpha degradation. IL-1 receptor-associated kinase 4 (IRAK4) belongs to the IRAK family of proteins and plays a critical role in IL-1R/TLR-mediated signaling. IRAK4 kinase-inactive mutant failed to mediate the IL-1R-TLR-induced TAK1-dependent NFkappaB activation pathway, but mediated IL-1-induced TAK1-independent NFkappaB activation and retained the ability to activate substantial gene expression, indicating a structural role of IRAK4 in mediating this alternative NFkappaB activation pathway. Deletion analysis of IRAK4 indicates the essential structural role of the IRAK4 death domain in receptor proximal signaling for mediating IL-1R-TLR-induced NFkappaB activation.  相似文献   

18.
IL-1R-associated kinase (IRAK) 4 is an essential component of innate immunity. IRAK-4 deficiency in mice and humans results in severe impairment of IL-1 and TLR signaling. We have solved the crystal structure for the death domain of Mus musculus IRAK-4 to 1.7 A resolution. This is the first glimpse of the structural details of a mammalian IRAK family member. The crystal structure reveals a six-helical bundle with a prominent loop, which among IRAKs and Pelle, a Drosophila homologue, is unique to IRAK-4. This highly structured loop contained between helices two and three, comprises an 11-aa stretch. Although innate immune domain recognition is thought to be very similar between Drosophila and mammals, this structural component points to a drastic difference. This structure can be used as a framework for future mutation and deletion studies and potential drug design.  相似文献   

19.
20.
Endotoxin tolerance reprograms Toll-like receptor 4 responses by impairing LPS-elicited production of pro-inflammatory cytokines without inhibiting expression of anti-inflammatory or anti-microbial mediators. In septic patients, Toll-like receptor tolerance is thought to underlie decreased pro-inflammatory cytokine expression in response to LPS and increased incidence of microbial infections. The impact of endotoxin tolerance on recruitment, post-translational modifications and signalosome assembly of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, TNF receptor-associated factor (TRAF) 6, TGF-β-activated kinase (TAK) 1, and IκB kinase (IKK) γ is largely unknown. We report that endotoxin tolerization of THP1 cells and human monocytes impairs LPS-mediated receptor recruitment and activation of IRAK4, ablates K63-linked polyubiquitination of IRAK1 and TRAF6, compromises assembly of IRAK1-TRAF6 and IRAK1-IKKγ platforms, and inhibits TAK1 activation. Deficiencies in these signaling events in LPS-tolerant cells coincided with increased expression of A20, an essential deubiquitination enzyme, and sustained A20-IRAK1 associations. Overexpression of A20 inhibited LPS-induced activation of NF-κB and ablated NF-κB reporter activation driven by ectopic expression of MyD88, IRAK1, IRAK2, TRAF6, and TAK1/TAB1, while not affecting the responses induced by IKKβ and p65. A20 shRNA knockdown abolished LPS tolerization of THP1 cells, mechanistically linking A20 and endotoxin tolerance. Thus, deficient LPS-induced activation of IRAK4 and TAK1, K63-linked polyubiquitination of IRAK1 and TRAF6, and disrupted IRAK1-TRAF6 and IRAK1-IKKγ assembly associated with increased A20 expression and A20-IRAK1 interactions are new determinants of endotoxin tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号