首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathogenicity tests of twenty-six fungal isolates were tested on peanut plants (Giza 5 cv.) and the results revealed that, Fusarium oxysporum isolate (No. I) followed by F. solani (No. II) then F. moniliforme (No III) significantly caused highest incidence of root rot disease. Also, F. moniliforme (No III) followed by F. solani (No II) then F. oxysporum (No I) gave the highest incidence of pod rot disease. The effectiveness of vescular arbuscular-mycorrhiza (VAM) at different application rates on the incidence of root rot, pod rot diseases and plant growth parameters of peanut was studied. All soil treatments with each rate of VAM significantly reduced root and pod rot diseases compared with control (rate 0%). The best reduction in the severity of both diseases with VAM was found at the rate of 3%. Application of rhizobacterin, microbin and cerialin biofertilisers at the different concentrations decreased the severity of both root rot and pod rot severity diseases compared with non-treated seeds. The greatest reduction in both diseases was achieved at a concentration of 8/100?g seeds. The highest number of pods and fresh weight (g) was achieved in seed supplemented with each biofertiliser at concentration of 8/100?g seed.  相似文献   

2.
An der endrotrophen vesikular‐arbuskulären Mykorrhiza (VAM) des Spargels sind vor allem Pilzarten der Gattung Glomus beteiligt. Sie bewirken eine gesicherte Förderung des Wurzel‐ und Sproßwachstums der Spargelpflanzen. Die Besiedelung der VAM‐Pilze wird durch mehrere Standortfaktoren beeinflußt. Das VAM‐Pilzinokulum kann aus mykorrhizalen Wurzelstücken, Pilzsporen und Feinerde bestehen. Die Methode ist billig und kann überall angewendet werden. Pflanzen, die mit VAM und Fusarium oxysporum f. sp. asparagi infiziert waren, erkrankten weniger als Pflanzen ohne Mykorrhiza.  相似文献   

3.
In Egypt, sesame cultivation is subject to attack by wilt and root-rot diseases caused by Fusarium oxysporum f.sp. sesami (Zap) Cast. and Macrophomina phaseolina (Maubl) Ashby causing losses in quality and quantity of sesame seed yield. Bacillus subtilis and Trichoderma viride isolates which were isolated from sesame rhizosphere were the most effective to antagonise fungal pathogens, causing high reduction of hyphal fungal growth. Trichoderma viride was found to be mycoparasitic on Fusarium oxysporum f.sp. sesami and M. phaseolina causing morphological atternation of fungal cells and sclerotial formation. In general, Bacillus subtilis, T. viride, avirulent Fusarium oxysporum isolate and Glomus spp. (Amycorrhizae) significantly reduced wilt and root-rot incidence of sesame plants at artificially infested potted soil by each one or two pathogens. Data obtained indicate that Glomus spp significantly reduced wilt and disease severity development on sesame plants followed by T. viride. Meanwhile, avirulent Fusarium oxysporum isolate followed by Glomus spp. were effective against root-rot disease incidence caused by M. phaseolina. Glomus spp. followed by B. subtilis significantly reduced wilt and root-rot disease of sesame plants. All biotic agents significantly reduced F. oxysporum f.sp. sesami and M. phaseolina counts in sesame rhizosphere at the lowest level. Glomus spp. and the avirulent isolate of F. oxysporum eliminated M. phaseolina in sesame rhizosphere. Meanwhile T. viride was the best agent at reducing F. oxysporum at a lower level than other treatments. Application of VA mycorrhizae (Glomus spp.) in fields naturally infested by pathogens significantly reduced wilt and root-rot incidence and it significantly colonised sesame root systems and rhizospheres compared to untreated sesame transplantings.  相似文献   

4.
A greenhouse experiment was carried out to determine whether the decline of Arnica montana L. in heathland vegetation in the Netherlands could be caused by a detrimental effect of soil acidification on vesicular-arbuscular mycorrhiza of this species. Arnica montana and two non-declining species from the same habitat, Hieracium pilosella L. and Deschampsia flexuosa (L.) Trin., were grown with and without the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thaxter sensu Gerdemann) Gerd. and Trappe in pots with an extremely nutrient-poor, sandy soil. They were percolated weekly with nutrient solution with different pH values, viz. 5.5, 4.5, 3.5 and 2.5. At intervals of three weeks and up to 12 weeks, measurements were made on growth, nutrient uptake and VAM infection.In the most acid treatments growth and nutrient uptake were reduced in all species. VAM infection decreased only slightly with decreasing pH of the treatments. Without VAM, Arnica montana died and Hieracium pilosella hardly grew at the most acid treatments. Therefore it is concluded that VAM decreased the stress caused by the most acid treatments. Leachate from the most acid treatment had a pH of approximately 4, and contained considerable amounts of aluminium, dissolved from the solid phase of the soil. This might have played a role in the detrimental effects on the plants in the case of the most acid treatment. No evidence was found in this experiment that the decline of Arnica montana was due to detrimental effects of soil acidification on VAM of this species.  相似文献   

5.
In greenhouse experiments, the ectomycorrhizal fungus Laccaria laccata was evaluated for biological control of preemergence, post-emergence and late damping-off of Pinus pinea caused by Fusarium verticillioides and F. oxysporum. In pre-emergence damping-off assays, preinoculation with Laccaria laccata did not significantly improve germination of seeds and no statistical significant differences were found in Fusarium treatments when compared with controls. At 18 weeks after sowing, inoculation with L. laccata reduced the incidence of post-emergence damping-off but differences were significant only in F. oxysporum treatments. Pinus pinea transplanted plants were used in late damping off assays, and only F. oxysporum produced significant damage. Inoculation with L. laccata did not attenuate significantly the virulence of F. oxysporum. However, the percentage of mycorrhization did not reached significant level, so the amount of mycorrhizal fungus was insufficient for effective protection. Although very low percentages of mycorrhization were recorded in all mycorrhized treatments, and Fusarium occurrence significantly reduced mycorrhization, those levels have been efficient to reduce damage in F. oxysporum post-emergence damping-off assays. In short, pre-emergence damping-off was not found; only F. oxysporum produced significant damage on P. pinea seedlings and L. laccata reduced damage when the percentage of mycorrhization reached a significant level. These results have been compared with previous work on P. sylvestris inoculated with the same mycorrhizae isolate and Fusarium pathogens.  相似文献   

6.
The potential of the biological control fungus Penicillium oxalicum to suppress wilt caused by Fusarium oxysporum f. sp. melonis and F. oxysporum f. sp. niveum on melon and watermelon, respectively, was tested under different growth conditions. The area under disease progress curve of F. oxysporum f. sp. melonis infected melon plants was significantly reduced in growth chamber and field experiments. In glasshouse experiments, it was necessary to apply P. oxalicum and dazomet in order to reduce Fusarium wilt severity in melons caused by F. oxysporum f. sp. melonis. For watermelons, we found that P. oxalicum alone reduced the area under the disease progress curve by 58% in the growth chamber experiments and 54% in the glasshouse experiments. From these results, we suggested that P. oxalicum may be effective for the management of Fusarium wilt in melon and watermelon plants.  相似文献   

7.
M. Habte  T. Aziz  J. E. Yuen 《Plant and Soil》1992,140(2):263-268
The residual effect of the fungicide chlorothalonil on the vesicular-arbuscular mycorrhizal (VAM) symbiosis was evaluated in a greenhouse experiment. The soil used was an oxisol (Tropeptic Eutrustox) treated with P to obtain target levels near-optimal for VAM activity or sufficient for nonmycorrhizal host growth. In the uninoculated soil treated with the former P level, the fungicide reduced VAM colonization of roots and completely suppressed symbiotic effectiveness measured in terms of pinnule P content. When this soil was inoculated with Glomus aggregatum, symbiotic effectiveness was significantly reduced but not eliminated by 50 mg of the fungicide kg−1. At higher chlorothalonil levels, VAM effectiveness but not VAM colonization was completely suppressed in the inoculated soil. The pattern with which chlorothalonil influenced tissue P content and dry matter yield at the time of harvest closely paralleled its effect on VAM effectiveness. In the soil treated with P level sufficient for nonmycorrhizal host growth, the adverse effect of the fungicide on the above variables was appreciably milder than when the host relied on VAM fungi for its P supply. The toxic effect of the fungicide, therefore, was partly offset by P fertilization, suggesting that VAM fungi were more sensitive to chlorothalonil than the host. Our results demonstrate that although the toxic effect of chlorothalonil declined as a function of time, a significant level of toxicity persisted 12.5 weeks after the chemical was applied to soil. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3625. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3625.  相似文献   

8.
The biological control efficacy of single or multiple applications of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus toward Radopholus similis was investigated in pot trials with banana under glasshouse conditions. R. similis was controlled substantially in single and combined applications of F. oxysporum with P. lilacinus or B. firmus. The combination of F. oxysporum and P. lilacinus caused a 68.5% reduction in nematode density whereas the individual applications reduced the density by 27.8% and 54.8% over the controls, respectively. Combined application of F. oxysporum and B. firmus was the most effective treatment in controlling R. similis on banana (86.2%), followed by B. firmus alone (63.7%). The compatibility of the biocontrol agents, as well the capacity of F. oxysporum to colonize banana roots in the absence or presence of P. lilacinus was also investigated. P. lilacinus did not adversely affect endophytic colonization by F. oxysporum. Biological control of R. similis in banana can therefore be enhanced via combined applications of antagonists with different modes of action that target different stages in the infection process. Handling editor: Ralf-Udo Ehlers  相似文献   

9.
The growth response of Hevea brasiliensis to vesicular-arbuscular mycorrhizal (VAM) fungi inoculation was assessed in two field nursery sites containing indigenous mycorrhizal fungi (IMF). Seedling rootstocks were inoculated with mixed VAM-fungal species in a factorial combination with phosphorus (P) fertilizer application, and planted in randomised blocks on sandy (site 1) and clayey (site 2) soils. Plants were harvested after 26 weeks for measurements of shoot dry weight (DW), stem diameter, height, mycorrhizal root colonization and leaf nutrient contents. At site 1, VAM increased shoot DW, stem diameter and plant height only in treatments without P applied. Increases in shoot DW due to VAM were 70% greater than the uninoculated controls although this was reduced to 5% when P was applied. At site 2, VAM inoculation also increased shoot DW and stem diameter but the magnitude of the increases was smaller. Shoot DW response due to VAM was only 29%. At this second site, applying phosphate to uninoculated plants did not increase shoot yields further. Leaf concentrations of all nutrients were unaffected by VAM at both sites, except for copper (Cu) which was increased by VAM in treatments where P was not applied. However, leaf contents of P, potassium (K), magnesium (Mg) and Cu were increased by VAM at site 1, and of leaf nitrogen (N) and K at site 2. These experiments demonstrate that VAM-fungi could be introduced into field nursery sites to improve growth and P uptake by H. brasiliensis. The relevance of VAM-fungi to H. brasiliensis seedling rootstock development and the influence of IMF in determining field responses is discussed.  相似文献   

10.
Michelsen  A.  Rosendahl  S. 《Plant and Soil》1990,124(1):7-13
The effect of vesicular-arbuscular mycorrhizal (VAM) fungi on growth and drought resistance of Acacia nilotica and Leucaena leucocephala seedlings was studied in a glasshouse experiment. The experimental design was a 2·2·2 factorial: ± mycorrhizal inoculation, ± application of phosphorus fertilizer and ± repeated drought treatment. The growth promoting effect of VAM fungi equalled the effect of phosphorus fertilization after 12 weeks. The drought treatment reduced seedling biomass and nodulation. Differences between the plant species were found with respect to growth improvements due to VAM inoculation and/or phosphorus fertilization under drought stress conditions. The results are discussed in relation to plant drought resistance and reforestation in the subhumid to arid tropics.  相似文献   

11.
Bacteria were obtained from soybean rhizosphere soil. And control effect of a tested isolate for controlling soybean root rot infected by Fusarium oxysporum was evaluated. The selected bacterial isolate exhibited the greatest inhibition of F. oxysporum in the laboratory and substantially reduced soybean root rot in pot-controlled assays.  相似文献   

12.
Interactions between Glomus fasciculatum and Aphanomyces euteiches root rot of peas (Pisum sativum), were studied in pot experiments using irradiated soil. Infections with the pathogen were suppressed by VAM when plants were challenge inoculated after two weeks. No reduction of the pathogen was detected when the plants were inoculated with both fungi at the same time. The suppression of the pathogen, obtained by preinoculation with G. fasciculatum, was not reduced when the inoculum level of the pathogen was increased thirty times. The induced resistance to A. euteiches in VAM plants was partially a systemic effect. When root systems were split into two halves, one with mycorrhiza and one with A. euteiches, the oospore production was reduced in both root systems. The infection with the pathogen was only suppressed when both fungi were present in the same pot. The background for the induced resistance is discussed.  相似文献   

13.
Summary The effect of vesicular-arbuscular mycorrhiza (VAM) on the fecundity ofVulpia ciliata ssp.ambigua was investigated at two field sites in eastern England by applying the fungicide benomyl to reduce VAM infection. The application of benomyl at the two sites produced very different results. At one site the application of the fungicide reduced the fecundity of plants whereas at the other fecundity was increased. At the first site the reduction in fecundity was linked to a significant reduction in VAM infection on the sprayed plants. The mechanism of the benefit associated with the VAM infection is however unclear: there was no treatment effect on morphology or on phosphorus inflow. At the second site, where fecundity was increased, there was only a negligible amount of VAM infection amongst the unsprayed plants and it is suggested that the increase in fecundity with the application of benomyl may have resulted from a reduction in infection by other, presumably pathogenic, fungi. The value of VAM fungi to the host plant may therefore not be restricted to physiological benefits. They may also provide protection to the plant by competing for space with other species of pathogenic fungi.  相似文献   

14.
Three heathand species, Antennaria dioica, Arnica montana and Hieracium pilosella, were artificially rained with ammonium sulphate solutions at increasing concentrations in a greenhouse experiment. The same species were also artificially rained with increasing ammonium sulphate solutions under field conditions. Dry weights of the plants in the field experiments did not change with increasing ammonium sulphate applications. Nor did the dry weights of plants in the greenhouse experiments change with increasing ammonium sulphate concentrations, except for Arnica montana, which showed an increase in dry weight. VAM infection percentage of Antennaria dioica increased in both the greenhouse and the field experiment. The results of the field experiment show that VAM infection rates are reduced after two years of artificial rain in the plant species Arnica montana, which grows naturally under nutrient poor conditions and is presently declining in its natural habitat in the Netherlands. In the greenhouse experiment, VAM infection of Arnica montana did not change with increasing ammonium sulphate concentrations. VAM infection rates of Hieracium pilosella, which presently is not declining, did not change with increasing ammonium sulphate concentrations.  相似文献   

15.
Glomus deserticola Trappe, Bloss & Menge, one of the most commonly occuring VAM fungi of arid and semiarid regions, was cultured and multiplied in root organ cultures of Ziziphus nummularia under in vitro conditions. The In vitro produced VAM fungi established efficient symbiosis with in vitro raised plantlets of Z. nummularia. This VAM strain improved the biomass production, nutrient uptake, and acclimatization of the in vitro produced plantlets of Z. nummularia in pots under green house conditions.Abbreviations VAM Vesicular Arbuscular Mycorrhiza - N Nitrogen - P Phosphorus - MS Murashige and Skoog(1962) medium  相似文献   

16.
Fusarium wilt is one of the most serious diseases affecting cotton. However, the pathogenesis and mechanism by which Fusarium oxysporum overcomes plant defence responses are unclear. Here, a new group D mitogen‐activated protein kinase (MAPK) gene, GhMPK20, was identified and functionally analysed in cotton. GhMPK20 expression was significantly induced by F. oxysporum. Virus‐induced gene silencing (VIGS) of GhMPK20 in cotton increased the tolerance to F. oxysporum, whereas ectopic GhMPK20 overexpression in Nicotiana benthamiana reduced F. oxysporum resistance via disruption of the salicylic acid (SA)‐mediated defence pathway. More importantly, an F. oxysporum‐induced MAPK cascade pathway composed of GhMKK4, GhMPK20 and GhWRKY40 was identified. VIGS of GhMKK4 and GhWRKY40 also enhanced F. oxysporum resistance in cotton, and the function of GhMKK4–GhMPK20 was shown to be essential for F. oxysporum‐induced GhWRKY40 expression. Together, our results indicate that the GhMKK4–GhMPK20–GhWRKY40 cascade in cotton plays an important role in the pathogenesis of F. oxysporum. This research broadens our knowledge of the negative role of the MAPK cascade in disease resistance in cotton and provides an important scientific basis for the formulation of Fusarium wilt prevention strategies.  相似文献   

17.
 Vesicular-arbuscular mycorrhizae (VAM) were common in seedlings of Pseudotsuga menziesii and Tsuga heterophylla grown in a greenhouse soil bioassay in soils collected from the Oregon Coast Range. Although root samples were heavily colonized by ectomycorrhizal fungi (EM), VAM colonization was observed in the cortical cells of both secondary and feeder roots. Vesicles, arbuscules, and hyphae typical of VAM occurred in 48% of 61 P. menziesii and 25% of 57 T. heterophylla seedlings. The ecological significance of VAM presence in the Pinaceae, as well as interactions among VAM, EM, and the plant host, deserve future investigation. Accepted: 16 August 1995  相似文献   

18.
Summary Abundance and distribution of vascular plants and vesicular-arbuscular mycorrhizal (VAM) fungi across a soil moisture-nutrient gradient were studied at a single site. Vegetation on the site varied from a dry mesic paririe dominated by little bluestem (Schizachyrium scoparium) to emergent aquatic vegetation dominated by cattail (Typha latifolia) and water smartweed (Polygonum hydropiperoides). Plant cover, VAM spore abundance, plant species richness, and number of VAM fungi represented as spores, had significant positive correlations with each other and with percent organic matter. The plant and VAM spore variables had significant negative correlations with soil pH and available Ca, Mg, P and gravimetric soil moisture. Using stepwise multiple regression, Ca was found to be the best predictor of spore abundance. Test for association between plant species and VAM fungal spores indicated that the spores of Glomus caledonium are associated with plants from dry, nutrient poor sites and spores of gigaspora gigantea are positively associated with plants occurring on the wet, relatively nutrient rich sites. Glomus fasciculatum was the most abundant and widely distributed VAM fungus and it had more positive associations with endophyte hosts than the other VAM fungi. We found no relationship between beta niche breadth of plant species and the presence or absence of mycorrhizal infection. However, our data suggest that some plant species may vary with respect to their infection status depending upon soil moisture conditions that may fluctuate seasonally or annually to favor or hinder VAM associations.  相似文献   

19.
The hypothesis that inoculation of transplants with vesicular-arbuscular mycorrhizal (VAM) fungi before planting into saline soils alleviates salt effects on growth and yield was tested on lettuce (Lactuca sativa L.) and onion (Allium cepa L.). A second hypothesis was that fungi isolated from saline soil are more effective in counteracting salt effects than those from nonsaline soil. VAM fungi from high- and low-salt soils were trap-cultured, their propagules quantified and adjusted to a like number, and added to a pasteurized soil mix in which seedlings were grown for 3–4 weeks. Once the seedlings were colonized by VAM fungi, they were transplanted into salinized (NaCl) soil. Preinoculated lettuce transplants grown for 11 weeks in the saline soils had greater shoot mass compared with nonVAM plants at all salt levels [2 (control), 4, 8 and 12 dS m–1] tested. Leaves of VAM lettuce at the highest salt level were significantly greener (more chlorophyll) than those of the nonVAM lettuce. NonVAM onions were stunted due to P deficiency in the soil, but inoculation with VAM fungi alleviated P deficiency and salinity effects; VAM onions were significantly larger at all salt levels than nonVAM onions. In a separate experiment, addition of P to salinized soil reduced the salt stress effect on nonVAM onions but to a lesser extent than by VAM inoculation. VAM fungi from the saline soil were not more effective in reducing growth inhibition by salt than those from the nonsaline site. Colonization of roots and length of soil hyphae produced by the VAM fungi decreased with increasing soil salt concentration. Results indicate that preinoculation of transplants with VAM fungi can help alleviate deleterious effects of saline soils on crop yield.  相似文献   

20.
Soil samples from both healthy and diseased paprika roots were tested to identify their mycoflora. Thirty-one species belonging to 16 genera were collected from rhizosphere and rhizoplane samples. The most frequently isolated fungi were Aspergillus flavus, A. niger, A. terreus, Fusarium oxysporum, Penicillium jensenii and Trichoderma harzianum. Fusarium oxysporum was the most common Fusarium species in the rhizoplane samples of diseased roots and identification was confirmed by RAPD-PCR technique. Trichoderma harzianum, T. pseudokoningii and Glioclaium roseum were chosen to study their biological control efficiency against Fusarium oxysporum. These fungal species reduced the percentage of seedling infection to 25, 40 and 50%, respectively. With the increasing of fungicide (Folicur and Ridomil) doses the dry weight of F. oxysporum decreased. Also, the increasing of fungicide dose lead to a slight decrease in the dry weight of T. harzianum, T. pseudokoningii and Glioclaium roseum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号