首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qi Y  Feng G  Yan W 《Molecular biology reports》2012,39(5):5683-5689
Osteoarthritis (OA) is a common disorder and the restoration of the diseased articular cartilage in patients with OA is still a challenge for researchers and clinicians. Currently, a variety of experimental strategies have investigated whether mesenchymal stem cells (MSCs) instead of chondrocytes can be used for the regeneration and maintenance of articular cartilage in OA. MSCs can modulate the immune response of individuals and positively influence the microenvironment of the stem cells already present in the diseased tissue. Through direct cell–cell interaction or the secretion of various factors, MSCs can initiate endogenous regenerative activities in the OA joint. Targeted gene-modified MSC-based therapy might further enhance the cartilage regeneration in OA. Conventionally, delivery of MSCs was attained by graft of engineered constructs derived from cell-seeded scaffolds. However, intra-articular MSCs transplantation without scaffolds is a more attractive option for OA treatment. This article briefly summarizes the current knowledge about MSC-based therapy for prevention or treatment of OA, discussing the direct intra-articular injection of MSCs for the treatment of OA in animal models and in clinical applications, as well as potential future strategies for OA treatment.  相似文献   

2.
Achieving sufficient functional properties prior to implantation remains a significant challenge for the development of tissue engineered cartilage. Many studies have shown chondrocytes respond well to various mechanical stimuli, resulting in the development of bioreactors capable of transmitting forces to articular cartilage in vitro. In this study, we describe the production of sizeable, tissue engineered cartilage using a novel scaffold-free approach, and determine the effect of perfusion and mechanical stimulation from a C9-x Cartigen bioreactor on the properties of the tissue engineered cartilage. We created sizable tissue engineered cartilage from porcine chondrocytes using a scaffold-free approach by centrifuging a high-density chondrocyte cell-suspension onto an agarose layer in a 50 mL tube. The gross and histological appearances, biochemical content, and mechanical properties of constructs cultured in the bioreactor for 4 weeks were compared to constructs cultured statically. Mechanical properties were determined from unconfined uniaxial compression tests. Constructs cultured in the bioreactor exhibited an increase in total GAG content, equilibrium compressive modulus, and dynamic modulus versus static constructs. Our study demonstrates the C9-x CartiGen bioreactor is able to enhance the biomechanical and biochemical properties of scaffold-free tissue engineered cartilage; however, no additional enhancement was seen between loaded and perfused groups.  相似文献   

3.
The success of stem cell-based cartilage repair requires that the regenerate tissue reach a stable state. To investigate the long-term stability of tissue engineered cartilage constructs, we assessed the development of compressive mechanical properties of chondrocyte and mesenchymal stem cell (MSC)-laden three dimensional agarose constructs cultured in a well defined chondrogenic in vitro environment through 112 days. Consistent with previous reports, in the presence of TGF-β, chondrocytes outperformed MSCs through day 56, under both free swelling and dynamic culture conditions, with MSC-laden constructs reaching a plateau in mechanical properties between days 28 and 56. Extending cultures through day 112 revealed that MSCs did not simply experience a lag in chondrogenesis, but rather that construct mechanical properties never matched those of chondrocyte-laden constructs. After 56 days, MSC-laden constructs underwent a marked reversal in their growth trajectory, with significant declines in glycosaminoglycan content and mechanical properties. Quantification of viability showed marked differences in cell health between chondrocytes and MSCs throughout the culture period, with MSC-laden construct cell viability falling to very low levels at these extended time points. These results were not dependent on the material environment, as similar findings were observed in a photocrosslinkable hyaluronic acid (HA) hydrogel system that is highly supportive of MSC chondrogenesis. These data suggest that, even within a controlled in vitro environment that is conducive to chondrogenesis, there may be an innate instability in the MSC phenotype that is independent of scaffold composition, and may ultimately limit their application in functional cartilage repair.  相似文献   

4.
Modulation of the mechanical properties of tissue engineered cartilage   总被引:9,自引:0,他引:9  
Cartilaginous constructs have been grown in vitro using chondrocytes, biodegradable polymer scaffolds, and tissue culture bioreactors. In the present work, we studied how the composition and mechanical properties of engineered cartilage can be modulated by the conditions and duration of in vitro cultivation, using three different environments: static flasks, mixed flasks, and rotating vessels. After 4-6 weeks, static culture yielded small and fragile constructs, while turbulent flow in mixed flasks induced the formation of an outer fibrous capsule; both environments resulted in constructs with poor mechanical properties. The constructs that were cultured freely suspended in a dynamic laminar flow field in rotating vessels had the highest fractions of glycosaminoglycans and collagen (respectively 75% and 39% of levels measured in native cartilage), and the best mechanical properties (equilibrium modulus, hydraulic permeability, dynamic stiffness, and streaming potential were all about 20% of values measured in native cartilage). Chondrocytes in cartilaginous constructs remained metabolically active and phenotypically stable over prolonged cultivation in rotating bioreactors. The wet weight fraction of glycosaminoglycans and equilibrium modulus of 7 month constructs reached or exceeded the corresponding values measured from freshly explanted native cartilage. Taken together, these findings suggest that functional equivalents of native cartilage can be engineered by optimizing the hydrodynamic conditions in tissue culture bioreactors and the duration of tissue cultivation.  相似文献   

5.
Functional tissue engineering of chondral and osteochondral constructs   总被引:5,自引:0,他引:5  
Lima EG  Mauck RL  Han SH  Park S  Ng KW  Ateshian GA  Hung CT 《Biorheology》2004,41(3-4):577-590
Due to the prevalence of osteoarthritis (OA) and damage to articular cartilage, coupled with the poor intrinsic healing capacity of this avascular connective tissue, there is a great demand for an articular cartilage substitute. As the bearing material of diarthrodial joints, articular cartilage has remarkable functional properties that have been difficult to reproduce in tissue-engineered constructs. We have previously demonstrated that by using a functional tissue engineering approach that incorporates mechanical loading into the long-term culture environment, one can enhance the development of mechanical properties in chondrocyte-seeded agarose constructs. As these gel constructs begin to achieve material properties similar to that of the native tissue, however, new challenges arise, including integration of the construct with the underlying native bone. To address this issue, we have developed a technique for producing gel constructs integrated into an underlying bony substrate. These osteochondral constructs develop cartilage-like extracellular matrix and material properties over time in free swelling culture. In this study, as a preliminary to loading such osteochondral constructs, finite element modeling (FEM) was used to predict the spatial and temporal stress, strain, and fluid flow fields within constructs subjected to dynamic deformational loading. The results of these models suggest that while chondral ("gel alone") constructs see a largely homogenous field of mechanical signals, osteochondral ("gel bone") constructs see a largely inhomogeneous distribution of mechanical signals. Such inhomogeneity in the mechanical environment may aid in the development of inhomogeneity in the engineered osteochondral constructs. Together with experimental observations, we anticipate that such modeling efforts will provide direction for our efforts aimed at the optimization of applied physical forces for the functional tissue engineering of an osteochondral articular cartilage substitute.  相似文献   

6.
Mesenchymal stem cells (MSCs), the nonhematopoietic progenitor cells found in various adult tissues, are characterized by their ease of isolation and their rapid growth in vitro while maintaining their differentiation potential, allowing for extensive culture expansion to obtain large quantities suitable for therapeutic use. These properties make MSCs an ideal candidate cell type as building blocks for tissue engineering efforts to regenerate replacement tissues and repair damaged structures as encountered in various arthritic conditions. Osteoarthritis (OA) is the most common arthritic condition and, like rheumatoid arthritis (RA), presents an inflammatory environment with immunological involvement and this has been an enduring obstacle that can potentially limit the use of cartilage tissue engineering. Recent advances in our understanding of the functions of MSCs have shown that MSCs also possess potent immunosuppression and anti-inflammation effects. In addition, through secretion of various soluble factors, MSCs can influence the local tissue environment and exert protective effects with an end result of effectively stimulating regeneration in situ. This function of MSCs can be exploited for their therapeutic application in degenerative joint diseases such as RA and OA. This review surveys the advances made in the past decade which have led to our current understanding of stem cell biology as relevant to diseases of the joint. The potential involvement of MSCs in the pathophysiology of degenerative joint diseases will also be discussed. Specifically, we will explore the potential of MSC-based cell therapy of OA and RA by means of functional replacement of damaged cartilage via tissue engineering as well as their anti-inflammatory and immunosuppressive activities.  相似文献   

7.
Native articular cartilage has limited capacity to repair itself from focal defects or osteoarthritis. Tissue engineering has provided a promising biological treatment strategy that is currently being evaluated in clinical trials. However, current approaches in translating these techniques to developing large engineered tissues remains a significant challenge. In this study, we present a method for developing large-scale engineered cartilage surfaces through modular fabrication. Modular Engineered Tissue Surfaces (METS) uses the well-known, but largely under-utilized self-adhesion properties of de novo tissue to create large scaffolds with nutrient channels. Compressive mechanical properties were evaluated throughout METS specimens, and the tensile mechanical strength of the bonds between attached constructs was evaluated over time. Raman spectroscopy, biochemical assays, and histology were performed to investigate matrix distribution. Results showed that by Day 14, stable connections had formed between the constructs in the METS samples. By Day 21, bonds were robust enough to form a rigid sheet and continued to increase in size and strength over time. Compressive mechanical properties and glycosaminoglycan (GAG) content of METS and individual constructs increased significantly over time. The METS technique builds on established tissue engineering accomplishments of developing constructs with GAG composition and compressive properties approaching native cartilage. This study demonstrated that modular fabrication is a viable technique for creating large-scale engineered cartilage, which can be broadly applied to many tissue engineering applications and construct geometries.  相似文献   

8.
In recent decades, mesenchymal stromal cells (MSCs) biomedical utilizing has attracted worldwide growing attention. After the first report of the human MSCs obtaining from the bone marrow (BM) tissue, these cells were isolated from wide types of the other tissues, ranging from adipose tissue to dental pulp. Their specific characteristics, comprising self-renewality, multipotency, and availability accompanied by their immunomodulatory properties and little ethical concern denote their importance in the context of regenerative medicine. Considering preclinical studies, MSCs can modify immune reactions during tissue repair and restoration, providing suitable milieu for tissue recovery; on the other hand, they can be differentiated into comprehensive types of the body cells, such as osteoblast, chondrocyte, hepatocyte, cardiomyocyte, fibroblast, and neural cells. Though a large number of studies have investigated MSCs capacities in regenerative medicine in varied animal models, the oncogenic capability of unregulated MSCs differentiation must be more assessed to enable their application in the clinic. In the current review, we provide a brief overview of MSCs sources, isolation, and expansion as well as immunomodulatory activities. More important, we try to collect and discuss recent preclinical and clinical research and evaluate current challenges in the context of the MSC-based cell therapy for regenerative medicine.  相似文献   

9.
Articular cartilage has a poor intrinsic capacity for self-repair. The advent of autologous chondrocyte implantation has provided a feasible method to treat cartilage defects. However, the associated drawbacks with the isolation and expansion of chondrocytes from autologous tissue has prompted research into alternative cell sources such as mesenchymal stem cells (MSCs) which have been found to exist in the bone marrow as well as other joint tissues such as the infrapatellar fat pad (IFP), synovium and within the synovial fluid itself. In this work we assessed the chondrogenic potential of IFP-derived porcine cells over a 6 week period in agarose hydrogel culture in terms of mechanical properties, biochemical content and histology. It was found that IFP cells underwent robust chondrogenesis as assessed by glycosaminoglycan (1.47±0.22% w/w) and collagen (1.44±0.22% w/w) accumulation after 42 days of culture. The 1 Hz dynamic modulus of the engineered tissue at this time point was 272.8 kPa (±46.8). The removal of TGF-β3 from culture after 21 days was shown to have a significant effect on both the mechanical properties and biochemical content of IFP constructs after 42 days, with minimal increases occurring from day 21 to day 42 without continued supplementation of TGF-β3. These findings further strengthen the case that the IFP may be a promising cell source for putative cartilage repair strategies.  相似文献   

10.
In a recent article, the authors provide a detailed summary of the characteristics and biological functions of mesenchymal stem cells (MSCs), as well as a discussion on the potential mechanisms of action of MSC-based therapies. They describe the morphology, biogenesis, and current isolation techniques of exosomes, one of the most important fractions of the MSC-derived secretome. They also summarize the characteristics of MSC-derived exosomes and highlight their functions and therapeutic potential for tissue/organ regeneration and for kidney, liver, cardiovascular, neurological, and musculoskeletal diseases, as well as cutaneous wound healing. Despite the fact that MSCs are regarded as an important pillar of regenerative medicine, their regenerative potential has been demonstrated to be limited in a number of pathological conditions. The negative effects of MSC-based cell therapy have heightened interest in the therapeutic use of MSC-derived secretome. On the other hand, MSC-derived exosomes and microvesicles possess the potential to have a significant impact on disease development, including cancer. MSCs can interact with tumor cells and promote mutual exchange and induction of cellular markers by exchanging secretome. Furthermore, enzymes secreted into and activated within exosomes can result in tumor cells acquiring new properties. As a result, therapeutic applications of MSC-derived secretomes must be approached with extreme caution.  相似文献   

11.
《Organogenesis》2013,9(3):317-322
This commentary discusses the rationale behind our recently reported work entitled “Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs,” introduces new data supporting our hypothesis, and discusses future applications of our bioreactor system. The ability to stimulate engineered cardiac tissue in a bioreactor system that combines both electrical and mechanical stimulation offers a unique opportunity to simulate the appropriate dynamics between stretch and contraction and model isovolumic contraction in vitro. Our previous study demonstrated that combined electromechanical stimulation that simulated the timing of isovolumic contraction in healthy tissue improved force generation via increased contractile and calcium handling protein expression and improved hypertrophic pathway activation. In new data presented here, we further demonstrate that modification of the timing between electrical and mechanical stimulation to mimic a non-physiological process negatively impacts the functionality of the engineered constructs. We close by exploring the various disease states that have altered timing between the electrical and mechanical stimulation signals as potential future directions for the use of this system.  相似文献   

12.
Osteoarthritis, a degenerative disease of the load-bearing joints, greatly reduces quality of life for millions of Americans and places a tremendous cost on the American healthcare system. Due to limitations of current treatments, tissue engineering of articular cartilage may provide a promising therapeutic option to treat cartilage defects. However, cartilage tissue engineering has yet to recapitulate the functional properties of native tissue. During normal joint loading, cartilage tissue experiences variations in osmolarity and subsequent changes in ionic concentrations. Motivated by these known variations in the cellular microenvironment, this study sought to improve the mechanical properties of neocartilage constructs via the application of hyperosmolarity and transient receptor potential vanilloid 4 (TRPV4) channel activator 4α-phorbol 12,13-didecanoate (4αPDD). It was shown that 4αPDD elicited significant increases in compressive properties. Importantly, when combined, 4αPDD positively interacted with hyperosmolarity to modulate its effects on tensile stiffness and collagen content. Thus, this study supports 4αPDD-activated channel TRPV4 as a purported mechanosensor and osmosensor that can facilitate the cell and tissue level responses to improve the mechanical properties of engineered cartilage. To our knowledge, this study is the first to systematically evaluate the roles of hyperosmolarity and 4αPDD on the functional (i.e., mechanical and biochemical) properties of self-assembled neotissue. Future work may combine 4αPDD-induced channel activation with other chemical and mechanical stimuli to create robust neocartilages suitable for treatment of articular cartilage defects.  相似文献   

13.
Bioreactor studies of native and tissue engineered cartilage   总被引:12,自引:0,他引:12  
Functional tissue engineering of cartilage involves the use of bioreactors designed to provide a controlled in vitro environment that embodies some of the biochemical and physical signals known to regulate chondrogenesis. Hydrodynamic conditions can affect in vitro tissue formation in at least two ways: by direct effects of hydrodynamic forces on cell morphology and function, and by indirect flow-induced changes in mass transfer of nutrients and metabolites. In the present work, we discuss the effects of three different in vitro environments: static flasks (tissues fixed in place, static medium), mixed flasks (tissues fixed in place, unidirectional turbulent flow) and rotating bioreactors (tissues dynamically suspended in laminar flow) on engineered cartilage constructs and native cartilage explants. As compared to static and mixed flasks, dynamic laminar flow in rotating bioreactors resulted in the most rapid tissue growth and the highest final fractions of glycosaminoglycans and total collagen in both tissues. Mechanical properties (equilibrium modulus, dynamic stiffness, hydraulic permeability) of engineered constructs and explanted cartilage correlated with the wet weight fractions of glycosaminoglycans and collagen. Current research needs in the area of cartilage tissue engineering include the utilization of additional physiologically relevant regulatory signals, and the development of predictive mathematical models that enable optimization of the conditions and duration of tissue culture.  相似文献   

14.
Due to the increasing number of heart valve diseases, there is an urgent clinical need for off-the-shelf tissue engineered heart valves. While significant progress has been made toward improving the design and performance of both mechanical and tissue engineered heart valves (TEHVs), a human implantable, functional, and viable TEHV has remained elusive. In animal studies so far, the implanted TEHVs have failed to survive more than a few months after transplantation due to insufficient mechanical properties. Therefore, the success of future heart valve tissue engineering approaches depends on the ability of the TEHV to mimic and maintain the functional and mechanical properties of the native heart valves. However, aside from some tensile quasistatic data and flexural or bending properties, detailed mechanical properties such as dynamic fatigue, creep behavior, and viscoelastic properties of heart valves are still poorly understood. The need for better understanding and more detailed characterization of mechanical properties of tissue engineered, as well as native heart valve constructs is thus evident. In the current review we aim to present an overview of the current understanding of the mechanical properties of human and common animal model heart valves. The relevant data on both native and tissue engineered heart valve constructs have been compiled and analyzed to help in defining the target ranges for mechanical properties of TEHV constructs, particularly for the aortic and the pulmonary valves. We conclude with a summary of perspectives on the future work on better understanding of the mechanical properties of TEHV constructs.  相似文献   

15.
Articular cartilage suffers from a limited repair capacity when damaged by mechanical insult or degraded by disease, such as osteoarthritis. To remedy this deficiency, several medical interventions have been developed. One such method is to resurface the damaged area with tissue-engineered cartilage; however, the engineered tissue typically lacks the biochemical properties and durability of native cartilage, questioning its long-term survivability. This limits the application of cartilage tissue engineering to the repair of small focal defects, relying on the surrounding tissue to protect the implanted material. To improve the properties of the developed tissue, mechanical stimulation is a popular method utilized to enhance the synthesis of cartilaginous extracellular matrix as well as the resultant mechanical properties of the engineered tissue. Mechanical stimulation applies forces to the tissue constructs analogous to those experienced in vivo. This is based on the premise that the mechanical environment, in part, regulates the development and maintenance of native tissue1,2. The most commonly applied form of mechanical stimulation in cartilage tissue engineering is dynamic compression at physiologic strains of approximately 5-20% at a frequency of 1 Hz1,3. Several studies have investigated the effects of dynamic compression and have shown it to have a positive effect on chondrocyte metabolism and biosynthesis, ultimately affecting the functional properties of the developed tissue4-8. In this paper, we illustrate the method to mechanically stimulate chondrocyte-agarose hydrogel constructs under dynamic compression and analyze changes in biosynthesis through biochemical and radioisotope assays. This method can also be readily modified to assess any potentially induced changes in cellular response as a result of mechanical stimuli.  相似文献   

16.
Mesenchymal stem cells (MSCs) are a heterogeneous population that can be isolated from various tissues, including bone marrow, adipose tissue, umbilical cord blood, and craniofacial tissue. MSCs have attracted increasingly more attention over the years due to their regenerative capacity and function in immunomodulation. The foundation of tissue regeneration is the potential of cells to differentiate into multiple cell lineages and give rise to multiple tissue types. In addition,the immunoregulatory function of MSCs has provided insights into therapeutic treatments for immune-mediated diseases. DNA methylation and demethylation are important epigenetic mechanisms that have been shown to modulate embryonic stem cell maintenance, proliferation, differentiation and apoptosis by activating or suppressing a number of genes. In most studies, DNA hypermethylation is associated with gene suppression, while hypomethylation or demethylation is associated with gene activation. The dynamic balance of DNA methylation and demethylation is required for normal mammalian development and inhibits the onset of abnormal phenotypes. However, the exact role of DNA methylation and demethylation in MSC-based tissue regeneration and immunomodulation requires further investigation. In this review, we discuss how DNA methylation and demethylation function in multi-lineage cell differentiation and immunomodulation of MSCs based on previously published work. Furthermore, we discuss the implications of the role of DNA methylation and demethylation in MSCs for the treatment of metabolic or immune-related diseases.  相似文献   

17.
The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm). While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.  相似文献   

18.
Our group has shown that numerous factors can influence how tissue engineered tendon constructs respond to in vitro mechanical stimulation. Although one study showed that stimulating mesenchymal stem cell (MSC)-collagen sponge constructs significantly increased construct linear stiffness and repair biomechanics, a second study showed no such effect when a collagen gel replaced the sponge. While these results suggest that scaffold material impacts the response of MSCs to mechanical stimulation, a well-designed intra-animal study was needed to directly compare the effects of type-I collagen gel versus type-I collagen sponge in regulating MSC response to a mechanical stimulus. Eight constructs from each cell line (n=8 cell lines) were created in specially designed silicone dishes. Four constructs were created by seeding MSCs on a type-I bovine collagen sponge, and the other four were formed by seeding MSCs in a purified bovine collagen gel. In each dish, two cell-sponge and two cell-gel constructs from each line were then mechanically stimulated once every 5 min to a peak strain of 2.4%, for 8 h/day for 2 weeks. The other dish remained in an incubator without stimulation for 2 weeks. After 14 days, all constructs were failed to determine mechanical properties. Mechanical stimulation significantly improved the linear stiffness (0.048+/-0.009 versus 0.015+/-0.004; mean+/-SEM (standard error of the mean ) N/mm) and linear modulus (0.016+/-0.004 versus 0.005+/-0.001; mean+/-SEM MPa) of cell-sponge constructs. However, the same stimulus produced no such improvement in cell-gel construct properties. These results confirm that collagen sponge rather than collagen gel facilitates how cells respond to a mechanical stimulus and may be the scaffold of choice in mechanical stimulation studies to produce functional tissue engineered structures.  相似文献   

19.
Over the last decades, mesenchymal stem cells (MSCs) have been extensively studied with regard to their potential applications in regenerative medicine. In rheumatic diseases, MSC-based therapy is the subject of great expectations for patients who are refractory to proposed treatments such as rheumatoid arthritis (RA), or display degenerative injuries without possible curative treatment, such as osteoarthritis (OA). The therapeutic potential of MSCs has been demonstrated in several pre-clinical models of OA or RA and both the safety and efficacy of MSC-based therapy is being evaluated in humans. The predominant mechanism by which MSCs participate to tissue repair is through a paracrine activity. Via the production of a multitude of trophic factors with various properties, MSCs can reduce tissue injury, protect tissue from further degradation and/or enhance tissue repair. However, a thorough in vivo examination of MSC-derived secretome and strategies to modulate it are still lacking. The present review discusses the current understanding of the MSC secretome as a therapeutic for treatment of inflammatory or degenerative pathologies focusing on rheumatic diseases. We provide insights on and perspectives for future development of the MSC secretome with respect to the release of extracellular vesicles that would have certain advantages over injection of living MSCs or administration of a single therapeutic factor or a combination of factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号