首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The principal purpose of this prospective study was to examine intercondylar notch size and the value of inner angle of lateral femoral condyle as the risk factors for noncontact anterior cruciate ligament ACL injury and than to correlate them to the physical values of the athletes such as body mass index (BMI), hight, wight, etc. There are indentified two type of risk factors, external include shoes-surface interaction, type of playing surface, weather conditions and internal include anatomic, neuromuscular, biomechanical and hormonal factors that may predispose female athlets to noncontact injury of ACL. Among anatomic factors, intercondylar notch stenosis and larger inner angle of lateral condyle of femur as the factors which can cause impigement of ACL, were related to an increased risk of injury of ACL. In this study were included 51 female athlete. In the study group there were 24 female handball players with ACL tear and in control group there were 27 female handball players without any type of injury of the knee, who are practicing handball on a daily basis for at least for two years. In the first step, were gathered clinical data performed by orthopaedic surgeon. In the second step, the femoral notch width and the inner angle of lateral condyle of femur were measured on coronal MR-images. Study has shown that value of inner angle of lateral condyle of femur was significantly higher in athletes with ACL tear compared to those without. Value of width of intercondylar notch was statisticaly smaller in athletes with ACL tear, compared to those without. In the conclusion the inner angle of lateral femoral condyle is better predicting factor for ACL tear in young female handball players compared to intercondylar notch width.  相似文献   

2.
Comparison of kinematics in the healthy and ACL injured knee using MRI   总被引:3,自引:0,他引:3  
Magnetic Resonance Imaging (MRI) was used to examine the characteristics of abnormal motion in the injured knee by mapping tibiofemoral contact. Eleven healthy subjects and 20 subjects with a unilateral ACL injury performed a leg-press against resistance. MRI scans of both knees at 15 degrees intervals from 0 degrees to 90 degrees of flexion were used to record the tibiofemoral contact pattern. The tibiofemoral contact pattern of the injured knees was more posterior on the tibial plateau than the healthy knees, particularly in the lateral compartment. The tibiofemoral contact pattern of the loaded knees did not differ from the unloaded knees. The difference in the tibiofemoral contact pattern in the ACL injured knee was associated with more severe knee symptoms, irrespective of the passive anterior laxity of the knee.  相似文献   

3.
This work presents a finite element analysis of anterior cruciate ligament (ACL) impingement against the intercondylar notch during tibial external rotation and abduction, as a mechanism of noncontact ACL injuries. Experimentally, ACL impingement was measured in a cadaveric knee in terms of impingement contact pressure and six degrees-of-freedom tibiofemoral kinematics. Three-dimensional geometries of the ACL, femur and tibia were incorporated into the finite element model of the individual knee specimen. A fiber-reinforced model was adopted, which accounts for the anisotropy, large deformation, nonlinearity and incompressibility of the ACL. With boundary conditions specified based on the experimental tibiofemoral kinematics, the finite element analysis showed that impingement between the ligament and the lateral wall of intercondylar notch could occur when qthe knee at 45° was externally rotated at 29.1° and abducted at 10.0°. Strong contact pressure and tensile stress occurred at the impinging and nonimpinging sides of the ligament, respectively. The impingement force and contact area estimated from the model matched their counterparts from the corresponding cadaver experiment. The modeling and experimental approach provides a useful tool to characterize potential ACL impingement on a knee-specific basis, which may help elucidate the ACL injury mechanism and develop more effective treatments.  相似文献   

4.
Increased posterior-inferior directed slope of the subchondral bone of the lateral tibial plateau is a risk factor for noncontact rupture of the anterior cruciate ligament (ACL). Previous measures of lateral tibial slope, however, vary from study to study and often lack documentation of their accuracy. These factors impede identifying the magnitude of lateral tibial slope that increases risk of noncontact ACL rupture. Therefore, we developed and evaluated a new method that (1) requires minimal user input; (2) employs 3D renderings of the tibia that are referenced to a 3D anatomic coordinate system; and (3) is precise, reliable, and accurate. The user first isolated the proximal tibia from computed tomography (CT) scans. Then, the algorithm placed the proximal tibia in an automatically generated tibial coordinate system. Next, it identified points along the rim of subchondral bone around the lateral tibial plateau, iteratively fit a plane to this rim of points, and, finally, referenced the plane to the tibial coordinate system. Precision and reliability of the lateral slope measurements were respectively assessed via standard deviation and intra- and inter-class correlation coefficients using CT scans of three cadaveric tibia. Accuracy was quantified by comparing changes in lateral tibial slope calculated by our algorithm to predefined in silico changes in slope. Precision, reliability, and accuracy were ≤0.18°, ≥0.998, and ≤0.13°, respectively. We will use our novel method to better understand the relationship between lateral tibial slope and knee biomechanics towards preventing ACL rupture and improving its treatment.  相似文献   

5.
It has been suggested that the repetitive nature of altered joint tissue loading which occurs after anterior cruciate ligament (ACL) rupture can contribute to the development of osteoarthritis (OA). However, changes in dynamic knee joint contact stresses after ACL rupture have not been quantified for activities of daily living. Our objective was to characterize changes in dynamic contact stress profiles that occur across the tibial plateau immediately after ACL transection. By subjecting sensor-augmented cadaveric knees to simulated gait, and analyzing the resulting contact stress profiles using a normalized cross-correlation algorithm, we tested the hypothesis that common changes in dynamic contact stress profiles exist after ACL injury. Three common profiles were identified in intact knees, occurring on the: (I) posterior lateral plateau, (II) posterior medial plateau, and (III) central region of the medial plateau. In ACL-transected knees, the magnitude and shape of the common dynamic stress profiles did not change, but their locations on the tibial plateau and the number of knees identified for each profile changed. Furthermore, in the ACL transected knees, a unique common contact stress profile was identified in the posterior region of the lateral plateau near the tibial spine. This framework can be used to understand the regional and temporal changes in joint mechanics after injury.  相似文献   

6.
Anterior tibial loading is a major factor involved in the anterior cruciate ligament (ACL) injury mechanism during ski impact landing. We sought to investigate the direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact of intact knee joints without quadriceps activation. Twelve porcine knee specimens were procured. Four specimens were used as non-impact control while the remaining eight were mounted onto a material-testing system at 70° flexion and subjected to simulated landing impact, which was successively repeated with incremental actuator displacement. Four specimens from the impacted group underwent pre-impact MRI for tibial plateau angle measurements while the other four were subjected to histology and microCT for cartilage morphology and volume assessment. The tibial plateau angles ranged from 29.4 to 38.8°. There was a moderate linear relationship (Y=0.16X; R2=0.64; p<0.001) between peak axial impact compressive load (Y) and peak anterior tibial load (X). The anterior and posterior regions in the impacted group sustained surface cartilage fraying, superficial clefts and tidemark disruption, compared to the control group. MicroCT scans displayed visible cartilage deformation for both anterior and posterior regions in the impacted group. Due to the tibial plateau angle, increased axial impact compressive load can directly elevate anterior tibial load and hence contribute to ACL failure during simulated landing impact. Axial impact compressive load resulted in shear cartilage damage along anterior–posterior tibial plateau regions, due to its contribution to anterior tibial loading. This mechanism plays an important role in elevating ACL stress and cartilage deformation during impact landing.  相似文献   

7.
Examination of anterior cruciate ligament (ACL) anatomy is of great interest both in studying injury mechanisms and surgical reconstruction. However, after a typical acute ACL rupture it is not possible to measure the dimensions of the ACL itself due to concomitant or subsequent degeneration of the remaining ligamentous tissue. The contralateral ACL may be an appropriate surrogate for measuring anatomical dimensions, but it remains unknown whether side-to-side differences preclude using the contralateral as a valid surrogate for the ruptured ACL. This study examined whether the ACL volume is significantly different between the left and right knees of uninjured subjects. ACL volumes were calculated for the left and right sides of 28 individuals using a previously validated MRI-based method. The mean ACL volume was not significantly different (p=0.2331) between the two sides in this population. Side-to-side ACL volume was also well correlated (correlation=0.91, p<0.0001). The results of this study show that the volume of the contralateral ACL is a valid surrogate measure for a missing ACL on the injured side. This non-invasive, in vivo technique for measuring ACL volume may prove useful in future large-scale comprehensive studies of potential risk factors for ACL rupture, in quantifying potential loading effects on ACL size as a prophylactic measure against ACL rupture, and in the use of ACL volume as a screening tool for assessing risk of injury.  相似文献   

8.
Altered joint motion has been thought to be a contributing factor in the long-term development of osteoarthritis after ACL reconstruction. While many studies have quantified knee kinematics after ACL injury and reconstruction, there is limited in vivo data characterizing the effects of altered knee motion on cartilage thickness distributions. Thus, the objective of this study was to compare cartilage thickness distributions in two groups of patients with ACL reconstruction: one group in which subjects received a non-anatomic reconstruction that resulted in abnormal joint motion and another group in which subjects received an anatomically placed graft that more closely restored normal knee motion. Ten patients with anatomic graft placement (mean follow-up: 20 months) and 12 patients with non-anatomic graft placement (mean follow-up: 18 months) were scanned using high-resolution MR imaging. These images were used to generate 3D mesh models of both knees of each patient. The operative and contralateral knee models were registered to each other and a grid sampling system was used to make site-specific comparisons of cartilage thickness. Patients in the non-anatomic graft placement group demonstrated a significant decrease in cartilage thickness along the medial intercondylar notch in the operative knee relative to the intact knee (8%). In the anatomic graft placement group, no significant changes were observed. These findings suggest that restoring normal knee motion after ACL injury may help to slow the progression of degeneration. Therefore, graft placement may have important implications on the development of osteoarthritis after ACL reconstruction.  相似文献   

9.
The knee is one of the most frequently injured joints in the human body. A recent study suggests that axial compressive loads on the knee may play a role in injury to the anterior cruciate ligament (ACL) for the flexed knee, because of an approximate 10 degrees posterior tilt in the tibial plateau (J. Orthop. Res. 16 (1998) 122-127). The hypothesis of the current study was that excessive axial compressive loads in the human tibio-femoral (TF) joint would cause relative displacement and rotation of the tibia with respect to the femur, and result in isolated injury to the ACL when the knee is flexed to 60 degrees , 90 degrees or 120 degrees . Sixteen isolated knees from eleven fresh cadaver donors (74.3+/-10.5 yr) were exposed to repetitive TF compressive loads increasing in intensity until catastrophic injury. ACL rupture was documented in 14/16 cases. The maximum TF joint compressive force for ACL failure was 5.1+/-2.1 kN for all flexion angles combined. For the 90 degrees flexed knee, the injury occurred with a relative anterior displacement of 5.4+/-3.8mm, a lateral displacement of 4.1+/-1.4mm, and a 7.8+/-7.0 degrees internal rotation of the tibia with respect to the femur.  相似文献   

10.
The knee is one of the most frequently injured joints in the human body. Approximately 91% of ACL injuries occur during sporting activities, usually from a non-contact event. The most common kinetic scenarios related with ACL injuries are internal twisting of the tibia relative to the femur or combined torque and compression during a hard landing. The hypothesis of this study was that the magnitudes and types of motion observed after ACL rupture would significantly change from the relative joint displacements present just before ACL injury. Compression or torsion experiments were conducted on 7 pairs of knee joints with repetitive tests at increasing intensity until catastrophic failure. ACL injury was documented in all cases at 5.4±2 kN of TF compression or 33±13 Nm of internal tibial torque. The femur displaced posteriorly relative to the tibia in pre-failure and with a higher magnitude in failure tests under both loading conditions. In compression experiments there was internal rotation of the tibia in pre-failure tests, but external rotation of the tibia after the ACL failed. In torsion experiments, failure occurred at 58±19° of internal tibial rotation, and valgus rotation of the femur increased significantly after ACL injury. These new data show that the joint motions can vary in magnitude and direction before and after failure of the ACL. Video-based studies consistently document external rotation of the tibia combined with valgus knee bending as the mechanism of ACL injury although these motions could be occurring after ACL rupture.  相似文献   

11.
Knee instability following anterior cruciate ligament (ACL) rupture compromises function and increases risk of injury to the cartilage and menisci. To understand the biomechanical function of the ACL, previous studies have primarily reported the net change in tibial position in response to multiplanar torques, which generate knee instability. In contrast, we retrospectively analyzed a cohort of 13 consecutively tested cadaveric knees and found distinct motion patterns, defined as the motion of the tibia as it translates and rotates from its unloaded, initial position to its loaded, final position. Specifically, ACL-sectioned knees either subluxated anteriorly under valgus torque (VL-subluxating) (5 knees) or under a combination of valgus and internal rotational torques (VL/IR-subluxating) (8 knees), which were applied at 15 and 30° flexion using a robotic manipulator. The purpose of this study was to identify differences between these knees that could be driving the two distinct motion patterns. Therefore, we asked whether parameters of bony geometry and tibiofemoral laxity (known risk factors of non-contact ACL injury) as well as in situ ACL force, when it was intact, differentiate knees in these two groups. VL-subluxating knees exhibited greater sagittal slope of the lateral tibia by 3.6 ± 2.4° (p = 0.003); less change in anterior laxity after ACL-sectioning during a simulated Lachman test by 3.2 ± 3.2 mm (p = 0.006); and, at the peak applied valgus torque (no internal rotation torque), higher posteriorly directed, in situ ACL force by 13.4 ± 11.3 N and 12.0 ± 11.6 N at 15° and 30° of flexion, respectively (both p ≤ 0.03). These results may suggest that subgroups of knees depend more on their ACL to control lateral tibial subluxation in response to uniplanar valgus and multiplanar valgus and internal rotation torques as mediated by anterior laxity and bony morphology.  相似文献   

12.
Templates of the membrane potential profiles from lateral (LI) interneurons and motoneurons during glutamate- and N-methyl-D-aspartate (NMDA)-induced fictive locomotion showed pronounced plateau phases. In contrast, crossed caudal (CC) interneurons had a less obvious and steeper plateau region that was followed by a clear notch coinciding with the end of the lateral interneuron plateau phase. These results indicate a significant inhibitory input from LI to CC interneurons.  相似文献   

13.
Anterior cruciate ligament (ACL) injury is a common injury encountered by sport medicine clinicians. Surgical reconstruction is the recommended treatment of choice for those athletes wishing to return to full-contact sports participation and for sports requiring multi-directional movement patterns. The aim of ACL reconstruction is to restore knee joint mechanical stability such that the athlete can return to sporting participation. However, knowledge regarding the extent to which lower limb kinematic profiles are restored following ACL reconstruction is limited. In the present study the hip and knee joint kinematic profiles of 13 ACL reconstructed (ACL-R) and 16 non-injured control subjects were investigated during the performance of a diagonal jump landing task. The ACL-R group exhibited significantly less peak knee joint flexion (P=0.01). Significant between group differences were noted for time averaged hip joint sagittal plane (P<0.05) and transverse plane (P<0.05) kinematic profiles, as well as knee joint frontal plane (P<0.05) and sagittal plane (P<0.05) kinematic profiles. These results suggest that aberrant hip and knee joint kinematic profiles are present following ACL reconstruction, which could influence future injury risk.  相似文献   

14.
PURPOSE: The purpose was to differentiate the dynamic knee stabilization strategies of potential copers (individuals who have the potential to compensate for the absence of an ACL without episodes of giving way after return to pre-injury activities) and non-copers (those who have knee instability following ACL rupture with return to pre-injury activities). METHODS: Twenty subjects with ACL rupture were assigned to potential coper (n=10) and non-coper (n=10) groups via a screening examination. Ten active people without lower extremity injury were also tested. Knee angle, tibial position and muscle activity data were collected while subjects stood in unilateral stance on a platform that moved horizontally in an anterior direction. Analysis included the preparation for platform movement; and monosynaptic, intermediate reflex and voluntary response intervals after platform movement. RESULTS: Non-copers showed greater knee flexion than uninjured subjects, and had a posterior tibial position and altered hamstring recruitment compared to the other groups. Potential copers demonstrated greater medial quadriceps activity while maintaining knee kinematics similar to uninjured subjects. Both potential copers and non-copers had greater co-contraction between medial hamstrings and quadriceps than uninjured subjects. All excitatory muscle activation occurred in the intermediate reflex interval. DISCUSSION AND CONCLUSIONS: Non-copers displayed aberrant muscle recruitment that may contribute to knee instability. Potential copers maintained normal tibial position using a strategy that permits quadriceps activation without excessive anterior tibial translation. Muscle recruitment in the intermediate reflex interval suggests neuromuscular training may influence the strategies.  相似文献   

15.
In humans, a notch marking the posterior attachment of the lateral meniscus is often visible on the posterior, lateral plateau of the tibia, adjacent to the intercondylar eminence. In theory, the presence or absence of this notch in dry bone can be used to differentiate the fossil remains of Australopithecus from those of the genus Homo. In a small-scale study, however, we found examples of modern human tibiae that appear not to have such a notch. In other cases, the morphology of the surrounding bone made it difficult to determine whether or not the notch was present. Although based on a small sample, this study questions: 1) the theoretical postulate that the lateral meniscal notch can be used to differentiate between hominin taxa, and 2) the practical reliability of determining the absence or presence of the notch in fossil remains.  相似文献   

16.
Post-traumatic knee osteochondral injuries are often coupled with anterior cruciate ligament (ACL) injury mechanisms during landing. However, it is not well understood whether restraining axial tibial rotation during landing would influence the extent and distribution of osteochondral disruption. Using ski landing as an example, this study subjected knee specimens to simulated landing impact without and with axial tibial rotation restraint, and investigated the extent and distribution of osteochondral disruption at the tibial plateau. Twenty-one porcine knee specimens were randomly divided into three test conditions, namely: (1) control, (2) impact only (I), and 3) impact with restraint (IR). Simulated landing impact was applied to the specimens based on a single 10 Hz haversine. Osteochondral explants were obtained from anterior, middle and posterior regions of medial and lateral tibial compartments. The extent of cartilage and trabecular disruption in these explants was examined based on histology, SEM and microCT. Only specimens in unrestrained condition incurred ACL failure upon impact. Restraining axial tibial rotation during simulated impact generally inflicted cartilage damage and deformation, and further caused trabecular disruption. Axial tibial rotation restraint did not necessarily restrict anterior tibial translation, as indicated by the presence of relative posterior femoral translation and osteochondral disruption at anterior–posterior tibial regions. While the results obtained in the current study may not be completely translatable to human models, there is likelihood that restraining axial tibial rotation during landing may help to prevent ACL failure, but will also induce osteochondral disruption in most tibial regions.  相似文献   

17.
In vivo tibiofemoral contact analysis using 3D MRI-based knee models   总被引:5,自引:0,他引:5  
This paper quantified the motion of the tibiofemoral contact points during in vivo weight bearing flexion using MRI- based 3D knee models and two orthogonal fluoroscopic images. The contact points on the medial and lateral tibial plateau were calculated by finding the centroid of the intersection of the tibial and femoral cartilage layers and by using the bony geometry alone. Our results indicate that the medial femoral condyle remains in the central portion of the tibial plateau and the lateral condyle translates posteriorly with increasing flexion. Using the bony contact model increased the total translation of the medial and lateral condyles by 250 and 55%, respectively, compared to the cartilage contact model. These results suggest that using the bony geometry alone may not accurately represent the articular surfaces of the knee. Articular cartilage geometry may have to be used to accurately quantify tibiofemoral contact.  相似文献   

18.
Anterior cruciate ligament (ACL) disruption is a common injury that is detrimental to an athlete's quality of life. Determining the mechanisms that cause ACL injury is important in order to develop proper interventions. A failure locus defined as various combinations of loadings and movements, internal/external rotation of femur and valgus and varus moments at a 25(o) knee flexion angle leading to ACL failure was obtained. The results indicated that varus and valgus movements were more dominant to the ACL injury than femoral rotation. Also, Von Mises stress in the lateral tibial cartilage during the valgus ACL injury mechanism was 83% greater than that of the medial cartilage during the varus mechanism of ACL injury. The results of this study could be used to develop training programmes focused on the avoidance of the described combination of movements which may lead to ACL injury.  相似文献   

19.
Although the morphology of the tibial plateau in primates has received very little attention in the literature, it does exhibit features of phylogenetic and functional interest. This paper describes the morphology of the tibial plateau (particularly the intercondylar region) in extant and fossil primates, and in three mammalian outgroups: the pen-tailed tree shrew (Ptilocercus), tree shrew (Tupaia), and flying lemur or dermopteran (Cynocephalus). Extant and fossil strepsirrhine primates exhibit an eminence with a single spine, which contrasts with the intercondylar morphology of haplorhine primates. Most extant platyrrhines, all catarrhine primates (including humans), and some fossil haplorhines possess an eminence with two spines (medial and lateral) connected by a ridge of bone that intersects the intercondylar groove. Tarsius and callitrichines possess an eminence with a reduced medial spine that superficially resembles that of strepsirrhine primates. Dermopterans also exhibit a morphology similar to that of strepsirrhines. In Scandentia, the intercondylar morphology of Tupaia is similar to that of rodents, whereas Ptilocercus resembles tarsiers and callitrichines. We hypothesize that proximal tibiae with either a single spine or reduced medial spine morphology facilitate a greater degree of knee rotation about the eminence relative to the double-spine condition, and are likely associated with more frequent adoption of vertical body positions. In contrast, a double-spine eminence limits knee rotation and is probably associated with greater use of horizontal supports. Although the polarity is complicated by the unknown phylogenetic status of likely sister taxa, it seems most probable that the single-spine morphology is a derived feature of strepsirrhines.  相似文献   

20.
Anterior cruciate ligament (ACL) disruption is a common injury that is detrimental to an athlete's quality of life. Determining the mechanisms that cause ACL injury is important in order to develop proper interventions. A failure locus defined as various combinations of loadings and movements, internal/external rotation of femur and valgus and varus moments at a 25o knee flexion angle leading to ACL failure was obtained. The results indicated that varus and valgus movements were more dominant to the ACL injury than femoral rotation. Also, Von Mises stress in the lateral tibial cartilage during the valgus ACL injury mechanism was 83% greater than that of the medial cartilage during the varus mechanism of ACL injury. The results of this study could be used to develop training programmes focused on the avoidance of the described combination of movements which may lead to ACL injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号