首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclic stresses applied to bones generate fatigue damage that affects the bone stiffness and its elastic modulus. This paper proposes a finite element model for the prediction of fatigue damage accumulation and failure in cancellous bone at continuum scale. The model is based on continuum damage mechanics and incorporates crack closure effects in compression. The propagation of the cracks is completely simulated throughout the damaged area. In this case, the stiffness of the broken element is reduced by 98% to ensure no stress-carrying capacities of completely damaged elements. Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. The proposed model suggests that damage evolves over a real physical time variable (cycles). In order to reduce the computation time, the integration of the damage growth rate is based on the cycle blocks approach. In this approach, the real number of cycles is reduced (divided) into equivalent blocks of cycles. Damage accumulation is computed over the cycle blocks and then extrapolated over the corresponding real cycles. The results show a clear difference between local tensile and compressive stresses on damage accumulation. Incorporating stiffness reduction also produces a redistribution of the peak stresses in the damaged region, which results in a delay in damage fracture.  相似文献   

2.
To understand more fully the early bone changes in an experimental model of osteoarthrosis, we quantified periarticular bone mineral density and bone mechanical properties in anterior cruciate ligament transected (ACLX) knee joints (4, 10, 32, and 39 wk post-ACLX) compared with contralateral joints and unoperated normal joints of skeletally mature animals. Maximal stress and energy were significantly reduced in ACLX cancellous bone from the medial femoral condyles at 4 wk postinjury. All mechanical properties (e.g., yield stress and elastic modulus) declined after 4 wk and were significantly reduced at 10 wk. ACLX bone mineral density was significantly reduced at all measured time points. Ash content was significantly reduced at 10 and 32 wk. Changes in the lateral condyles were similar but less pronounced than in the medial condyles. These bony changes accompanied the earliest articular cartilage molecular changes and preceded changes in the articular cartilage gross morphology. We suggest that these early changes in bone mechanical behavior contribute to the progression of osteoarthrosis and pathogenic changes in the joint.  相似文献   

3.
4.
Allogeneic demineralized bone has been used extensively as a clinical graft material because it has osteoinductive and osteoconductive properties. Concerns over processing and terminal sterilization procedures that may reduce performance have led clinicians to call for assurances of product potency. There is extensive experience on effects of demineralized bone in animal and cell culture models with the possibility for future evidence-based standards for release of products. Evaluation of the current state of knowledge leads to the fact that we cannot conclude that performance of different lots of demineralized bone allografts in in vivo or in vitro test systems can be used as a measure of clinical performance. It may be possible to adopt an osteoinductivity standard for release-to-market, but it should be followed by clinical monitoring and further research.Presented in part at the 27th Annual Meeting of the American Association of Tissue Banks, San Diego, CA, August 24, 2003.  相似文献   

5.
Bone cement infiltration can be effective at mechanically augmenting osteoporotic vertebrae. While most published literature describes the gain in mechanical strength of augmented vertebrae, we report the first measurements of viscoelastic material changes of cancellous bone due to cement infiltration. We infiltrated cancellous core specimen harvested from osteoporotic cadaveric spines with acrylic bone cement. Bone specimen before and after cement infiltration were subjected to identical quasi-static and relaxation loading in confined and free compression. Testing data were fitted to a linear viscoelastic model of compressible material and the model parameters for cement, native cancellous bone, and cancellous bone infiltrated (composite) with cement were identified. The fitting demonstrated that the linear viscoelastic model presented in this paper accurately describes the mechanical behaviour of cement and bone, before and after infiltration. Although the composite specimen did not completely adopt the properties of bulk bone cement, the stiffening of cancellous bone due to cement infiltration is considerable. The composite was, for example, 8.5 times stiffer than native bone. The local stiffening of cancellous bone in patients may alter the load transfer of the augmented motion segment and may be the cause of subsequent fractures in the vertebrae adjacent to the ones infiltrated with cement. The material model and parameters in this paper, together with an adequate finite-element model, can be helpful to investigate the load shift, the mechanism for subsequent fractures, and filling patterns for ideal cement infiltration.  相似文献   

6.
Active vitamin D metabolites have been demonstrated to reduce vertebral and hip fractures in elderly patients. A number of in vitro and in vivo pre-clinical studies have suggested that vitamin D may effectively stimulate osteoblastic activity and exert an anabolic effect on bone. The current study was designed to further explore the ability of an active vitamin D analog to restore bone in a skeletal site with established osteopenia in ovariectomized (OVX) rats. Female Sprague Dawley rats at five months of age and 8 weeks after sham ovariectomy or ovariectomy were randomly divided into 7 groups with 10 per group. At the beginning of the treatments, one group of sham-operated rats and one group of OVX rats were sacrificed to serve as baseline controls. Another group of sham-operated rats and one group of OVX rats were treated with vehicle for 4 weeks. The OVX rats in the remaining groups were treated with alfacalcidol at 0.05, 0.1 or 0.2 microg/kg/d by daily oral gavage, 5 days/week for 4 weeks. As expected, estrogen depletion caused high bone turnover and cancellous bone loss in lumbar vertebra of OVX rats. Alfacalcidol treatment at 0.1 or 0.2 but not 0.05 microg/kg/d increased serum calcium and phosphorus in OVX rats as compared with vehicle treatment. In addition, serum parathyroid hormone was suppressed, whereas serum osteocalcin was increased by alfacalcidol at all dose levels. Furthermore, histomorphometric data of 2nd lumbar vertebral body revealed that cancellous bone volume in OVX rats treated with alfacalcidol at 0.1 or 0.2 microg/kg/d was increased to the level of sham-operated rats treated with vehicle. This increment in cancellous bone mass was accompanied by increases in trabecular number and thickness and a decrease in trabecular separation. Moreover, osteoclast surface and number were significantly decreased, whereas bone formation variables such as mineralizing surface and bone formation rate were significantly increased in alfacalcidol- treated OVX rats compared with those of vehicle-treated OVX rats. Finally, a linear regression analysis showed that alfacalcidol treatment dose-dependently altered most of the variables measured in the current study. In conclusion, alfacalcidol completely restores cancellous bone by stimulating bone formation and suppressing bone resorption in lumbar vertebra of OVX rats when the treatment is started at an early phase of osteopenia. The evidence of increased bone formation by alfacalcidol treatments further supports the notion that active vitamin D metabolites or their analogs may exert anabolic effects on bone.  相似文献   

7.
Carotenes could protect cells from radiation damage by chemically quenching the free radicals and the activated chemical species originated by the exposure. We tested this hypothesis with strains of the zygomycete Phycomyces blakesleeanus that contained different carotenes (phytoene, lycopene, β-carotene) or different concentrations of β-carotene. Pairs of strains were cultured together, exposed to a maximum of 73 Gy γ-radiation from a 60Co source, and allowed to recover and grow further together on limited resources. Irradiation did not affect the relative abundance of each strain in the resulting spore crop. Thus, carotenes did not protect the fungal cells against γ-radiation and did not influence their recovery from damage caused by the exposure. Received: 12 October 1995 / Accepted in revised form: 18 March 1996  相似文献   

8.
Osteoporosis is a bone disease resulting in increased fracture risk as a result of alterations in both quantity and quality of bone. Bone quality is a combination of metabolic and microarchitectural properties of bone that can help to explain the increased susceptibility to fracture. Translational animal models are essential to understanding the pathology and for evaluating potential treatments of this disease. Large animals, such as the ovariectomized sheep, have been used as models for post-menopausal osteoporosis. However, long-term studies have not been carried out to observe the effects of ovariectomy after more than one year. This study employed micro-computed tomography to quantify changes in microarchitectural and mechanical parameters in femoral condyles and vertebral bodies of sheep that were sacrificed one or two years following ovariectomy. In the vertebral body, microarchitectural characteristics were significantly degraded following one year of ovariectomy in comparison to controls. The mechanical anisotropy, determined from micro-scale finite element models, was also greater in the ovariectomized groups, although the fabric tensor anisotropy was similar. There was no greater architectural degradation following two years of ovariectomy compared to one. Ovariectomy had minimal effects on the trabecular architecture of the distal femur even after two years. These results indicate that the vertebral body is the preferred anatomic site for studying bone from the ovariectomized sheep model, and that architectural changes stabilize after the first year.  相似文献   

9.
Limitations of the continuum assumption in cancellous bone   总被引:4,自引:1,他引:3  
Most existing stress analyses of the skeleton which consider cancellous bone assume that it can be modelled as a continuum. In this paper we develop a criterion for the validity of this assumption. The limitations of the continuum assumption appear in two areas: near biologic interfaces, and in areas of large stress gradients. These limitations are explored using a probabilistic line scanning model for density measurement, resulting in an estimate of density accuracy as a function of line length which is experimentally verified. Within three to five trabeculae of an interface, a continuum model is suspect. When results as predicted using continuum analyses vary by more than 20-30% over a distance spanning three to five trabeculae, the results are suspect.  相似文献   

10.
11.
12.
Compressive axial strain distributions in cancellous bone specimens   总被引:1,自引:0,他引:1  
The compressive axial strain distribution in cylindrical trabecular bone specimens was studied using digitized images of the specimen surface. Specimens were tested with strain rate 0.00015 s-1. Images were taken at 0, 1, 2, 3, 4, 6, 8 and 10% strain. Using an optical illusion of movement by rapidly changing succeeding images, failures were classified as transverse (33%) or oblique collapses (67%). The location of failure was not determined by the specimen density gradient. Local axial strain in the distal, intermediate and proximal third was measured throughout the compression in the transversely failing specimens, whereas local strain in the obliquely failing specimens was measured in the pre-failure phase only. Axial strain inhomogeneity was observed in the pre-failure as well as in the post-failure phase. In the pre-failure phase the intermediate third was strained significantly less than the thirds near the ends. In the post-failure phase specimen strain occurred solely in the collapsed part. Ultimate strain of the transversely failing specimens was 2.5% and ultimate strain of the failing third was 3.7%. At failure less than 1% strain was observed in the intermediate third and at 10% specimen strain 1.5% local strain was found in the intermediate third. The results indicate unreliability of conventional stiffness and strain measurements in trabecular bone specimens probably due to lack of trabecular constraint at the end surfaces. Conventional measurements tend to underestimate stiffness and, by giving an average value of strain in spite of considerable strain inhomogeneity, to underestimate failure strain.  相似文献   

13.
The structural and dynamic characteristics of cancellous bone from biopsy sites representing different degrees of weight bearing were quantified following double fluorochrome labeling of adult male Macaca fascicularis. A strong correlation of bone formation rate was found between the humerus, tibia, and iliac crest within the same individual. There was no significant correlation between differing biopsy sites for the structural measures of bone. The coefficient of variation for bone formation rate at different sites from the same animal was comparable to the coefficient of variation for different animals measured at the same biopsy site. The present study suggests that any accessible site of cancellous bone will yield a representative measure of bone formation rate, but that structural measures are not generalizable between different sites. © 1996 Wiley-Liss, Inc.  相似文献   

14.
The interaction of haematoporphyrin derivative (HPD) photosensitization and gamma-irradiation was studied with regard to clonogenicity of Chinese hamster ovary (CHO) fibroblasts. Exposure to either treatment alone resulted in shouldered response curves. Exposure to 4.2 Gy gamma-radiation immediately before graded doses of visible light had no effect on the shape of the visible-light survival curve; similarly, exposure to 8.75 kJ/m2 light immediately before graded doses of gamma-radiation had no effect on the shape of the gamma-radiation response curve. These data indicate that damage due to gamma-radiation and HPD photosensitization did not interact, suggesting that the mechanisms of cell killing are different.  相似文献   

15.
Aluminum is known to accumulate with age in bone and other tissues of humans, even in the absence of renal disease. Our study aimed to develop a histological staining method sufficiently sensitive to detect aluminum in plastic sections of undecalcified bone biopsies from healthy volunteers as well as from patients with renal and non-renal bone diseases. We used quantitative histomorphometry to measure the percentage of trabecular surface stained by aluminum and found that our new method was approximately 50% more sensitive for detecting aluminum than the Acid Solochrome Azurine (ASA) method which in turn was significantly more sensitive than the Aluminon method. Aluminon is widely used in pathology laboratories for diagnostic purposes despite concerns in the literature about Aluminon's limited sensitivity for aluminum. Our histomorphometric results showed that the newly developed method stained approximately 10% of the trabecular surface in bone sections from healthy controls, 38% from renal patients, 26% from patients with vitamin D deficiency, and 29% from patients with osteoporosis. Histomorphometric measurements of aluminum-stained trabecular surfaces in sections stained with ASA were consistent with those obtained in Walton-stained sections but proportionately lower. Moreover, the Walton and ASA methods stained aluminum at similar locations in adjacent bone sections. As the ASA and Walton methods are considerably more sensitive for bone aluminum than the Aluminon method, we recommend that either of them should be used in place of the Aluminon method for routine diagnostic purposes.  相似文献   

16.
Biomechanics and Modeling in Mechanobiology - In this paper, the material length scale parameter of the modified couple stress theory for trabecular bones is studied. For this reason, experimental...  相似文献   

17.
18.
The effect of gamma-linolenic acid (GLA) and prostaglandin E1 (PGE1) on gamma-radiation, diphenylhydantoin (DPH), benzo(a)pyrene (BP), and 4-alpha-phorbol-induced genetic damage to the bone marrow cells of mice, using the sensitive micronucleus (MN) test was investigated. PGE1 and its precursor GLA prevented gamma-radiation, DPH, BP, and 4-alpha-phorbol-induced genetic damage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号