首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cells (DCs) are highly specialized antigen-presenting cells that play an essential role in the immune response. We used the proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry to identify the protein changes that occur during differentiation of DCs from monocytes (Mo) stimulated with granulocyte macrophage colony stimulating factor/interleukin-4 (GM-CSF/IL-4) and during the maturation of immature DCs stimulated with lipopolysaccharide. Sixty-three differentially expressed proteins (+/- two-fold) were unambiguously identified with sequence coverage greater than 20%. They corresponded to only 36 different proteins, because 11 were present as 38 electrophoretic forms. Some proteins such as tropomyosin 4 and heat shock protein 71 presented differentially expressed electrophoretic forms, suggesting that many of the changes in protein expression that accompany differentiation and maturation of DCs occur in post-translationally modified proteins. The largest differences in expression were observed for actin (21-fold in Mo), Rho GDP-dissociation inhibitor 2 (20-fold in Mo), vimentin (eight-fold in immature DCs), lymphocyte-specific protein 1 (12-fold in mature DCs) and thioredoxin (14-fold in mature DCs). Several proteins are directly related to functional and morphological characteristics of DCs, such as cytoskeletal proteins (cytoskeleton rearrangement) and chaperones (antigen processing and presentation), but other proteins have not been assigned specific functions in DCs. Only a few proteins identified here were the same as those reported in proteomic studies of DCs, which used different stimuli to produce the cells (GM-CSF/IL-4 and tumor necrosis factor-alpha). These data suggest that the DC protein profile depends on the stimuli used for differentiation and especially for maturation.  相似文献   

2.
3.
Mast cells (MCs) produce soluble mediators such as histamine and prostaglandins that are known to influence dendritic cell (DC) function by stimulating maturation and antigen processing. Whether direct cell–cell interactions are important in modulating MC/DC function is unclear. In this paper, we show that direct contact between MCs and DCs occurs and plays an important role in modulating the immune response. Activation of MCs through FcεRI cross-linking triggers the formation of stable cell–cell interactions with immature DCs that are reminiscent of the immunological synapse. Direct cellular contact differentially regulates the secreted cytokine profile, indicating that MC modulation of DC populations is influenced by the nature of their interaction. Synapse formation requires integrin engagement and facilitates the transfer of internalized MC-specific antigen from MCs to DCs. The transferred material is ultimately processed and presented by DCs and can activate T cells. The physiological outcomes of the MC–DC synapse suggest a new role for intercellular crosstalk in defining the immune response.  相似文献   

4.
Directed differentiation of dendritic cells from mouse embryonic stem cells   总被引:14,自引:0,他引:14  
Dendritic cells (DCs) are uniquely capable of presenting antigen to naive T cells, either eliciting immunity [1] or ensuring self-tolerance [2]. This property identifies DCs as potential candidates for enhancing responses to foreign [3] and tumour antigens [4], and as targets for immune intervention in the treatment of autoimmunity and allograft rejection [1]. Realisation of their therapeutic potential would be greatly facilitated by a fuller understanding of the function of DC-specific genes, a goal that has frequently proven elusive because of the paucity of stable lines of DCs that retain their unique properties, and the inherent resistance of primary DCs to genetic modification. Protocols for the genetic manipulation of embryonic stem (ES) cells are, by contrast, well established [5], as is their capacity to differentiate into a wide variety of cell types in vitro, including many of hematopoietic origin [6]. Here, we report the establishment, from mouse ES cells, of long-term cultures of immature DCs that share many characteristics with macrophages, but acquire, upon maturation, the allostimulatory capacity and surface phenotype of classical DCs, including expression of CD11c, major histocompatibility complex (MHC) class II and co-stimulatory molecules. This novel source should prove valuable for the generation of primary, untransformed DCs in which candidate genes have been overexpressed or functionally ablated, while providing insights into the earliest stages of DC ontogeny.  相似文献   

5.
6.
Dendritic cells (DCs) are the quintessential antigen-presenting cells of the human immune system and play a prime role in coordinating innate and adaptive immune responses, explaining the strong and still growing interest in their application for cancer immunotherapy. Much current research in the field of DC-based immunotherapy focuses on optimizing the culture conditions for in vitro DC generation in order to assure that DCs with the best possible immunogenic qualities are being used for immunotherapy. In this context, monocyte-derived DCs that are alternatively induced by interleukin-15 (IL-15 DCs) have attracted recent attention due to their superior immunostimulatory characteristics. In this study, we show that IL-15 DCs, in addition to potent tumor antigen-presenting function, possess tumoricidal potential and thus qualify for the designation of killer DCs. Notwithstanding marked expression of the natural killer (NK) cell marker CD56 on a subset of IL-15 DCs, we found no evidence of a further phenotypic overlap between IL-15 DCs and NK cells. Allostimulation and antigen presentation assays confirmed that IL-15 DCs should be regarded as bona fide myeloid DCs not only from the phenotypic but also from the functional point of view. Concerning their cytotoxic activity, we demonstrate that IL-15 DCs are able to induce apoptotic cell death of the human K562 tumor cell line, while sparing tumor antigen-specific T cells. The cytotoxicity of IL-15 DCs is predominantly mediated by granzyme B and, to a small extent, by tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL) but is independent of perforin, Fas ligand and TNF-α. In conclusion, our data provide evidence of a previously unappreciated role for IL-15 in the differentiation of human monocytes towards killer DCs. The observation that IL-15 DCs have killer DC capacity lends further support to their implementation in DC-based immunotherapy protocols.  相似文献   

7.
Dendritic cells (DCs) link innate immune sensing of the environment to the initiation of adaptive immune responses. Given their supreme capacity to interact with and present antigen to T cells, DCs have been proposed as key mediators of immunological tolerance in the steady state. However, recent evidence suggests that the role of DCs in central and peripheral T-cell tolerance is neither obligate nor dominant. Instead, DCs appear to regulate multiple aspects of T-cell physiology including tonic antigen receptor signaling, priming of effector T-cell response, and the maintenance of regulatory T cells. These diverse contributions of DCs may reflect the significant heterogeneity and "division of labor" observed between and within distinct DC subsets. The emerging complex role of different DC subsets should form the conceptual basis of DC-based therapeutic approaches toward induction of tolerance or immunization.  相似文献   

8.
9.
We describe here the protein expression of H4 histamine receptor in cells of the innate immune system, which include NK cells, monocytes, and dendritic cells (DCs). Anti-H4R specifically stained permeabilized NK cells, THP-1 clone 15 monocytes, and DCs. This binding was inhibited by incubating anti-H4R Ab with its corresponding peptide. Histamine induced NK cells, THP-1 clone 15 cells, and DCs chemotaxis with high affinity. The ED(50) chemotactic effect was 5 nM, 6.8 nM, and 2.7 nM for NK cells, THP-1 clone 15 cells, and DCs, respectively. Thioperamide, an H3R/H4R antagonist, inhibited histamine-induced chemotaxis in all these cells. However, histamine failed to induce the mobilization of [Ca(2+)](i) in NK cells and THP-1 clone 15 cells, but it induced calcium fluxes in DCs. Using a new method of detecting NK cell-mediated cytolysis, it was observed that NK cells efficiently lysed K562 target cells and that histamine did not affect this NK cell activity. In summary, this is the first demonstration of the protein expression of H4 receptor in NK cells. Also, the results of the chemotactic effects of histamine on NK cells and THP-1 cells are novel. These results may shed some light on the colocalization of cells of innate immune arm at sites of inflammation. They are also important for developing drugs that target H4R for the treatment of various disorders, such as autoimmune and immunodeficient diseases.  相似文献   

10.
Cytokines and other soluble factors released by tumor cells play an important role in modulating immune cells to favor tumor development. Monocyte differentiation into macrophages or dendritic cells (DCs) with specific phenotypes is deeply affected by tumor signals and understanding this context is paramount to prevent and propose new therapeutic possibilities. Hence, we developed a study to better describe the modulatory effects of leukemia and lymphoma cell products on human monocytes and monocyte-derived DCs secretion of cytokines such as interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-6, and IL-12. Except with the promyelocytic leukemia cell supernatants (HL-60), the other two tumor supernatants (chronic myeloid leukemia, K562 and Burkitt lymphoma, DAUDI) increased both TNF-α and IL-1β production by monocytes and monocytes undergoing differentiation. This effect was neither explained by alterations of cell number in culture nor by the high amount of vascular endothelial growth factor (VEGF) present in the tumor supernatants. Moreover, all supernatants used were able to induce drastic reduction of IL-12 secretion by cells induced to activation, suggesting a negative interference with Th1 antitumoral responses that should be a huge advantage for tumor progression.  相似文献   

11.
Dendritic cells (DCs) are a rare population of leukocytes specialized in Ag processing and presentation to T cells. We have previously shown that cultured rat splenic DCs exhibit a cytotoxic activity against selected target cells. In this study, we analyzed this function in DCs freshly prepared from lymphoid organs using the DC-specific OX62 mAb and magnetic beads. Freshly extracted splenic DCs, but not lymph node and thymic DCs, exhibited a strong and moderate cytotoxic activity against YAC-1 and K562 target cells, respectively. FACS analyses showed that spleen contained a minor subset (10-15%) of CD4(+) and class II(int) DCs that also expressed the OX41 Ag and the lymphoid-related Ags CD5 and CD90 (Thy-1) and a major (80-85%) subset of CD4(-)/OX41(-)/CD5(-) and class II(int) DCs. The cytotoxic activity of splenic DCs was strictly restricted to the CD4(-) DCs, a subset poorly represented in LN and thymus. Contrasting with our previous report using cultured splenic DCs, freshly isolated splenic DCs killed YAC-1 cells using a Ca(2+)-independent mechanism, but this function did not appear mediated by Fas ligand, TNF-related apoptosis-inducing ligand, or TNF-alpha. Therefore, rat DCs contain a subset of naturally cytolytic cells that could play a role in both innate and acquired immune responses. Together with our previous report, these data suggest that rat DCs can use two mechanisms of cytotoxicity depending on their maturation/activation state.  相似文献   

12.
13.
Dendritic cells (DCs) have the ability to present antigen and play a critical role in the induction of the acquired immune response. Skin DCs uptake antigen and subsequently migrate to regional draining lymph nodes (LNs), where they activate naive T cells. Here we show that the water/glycerol channel protein aquaporin 7 (AQP7) is expressed on epidermal and dermal DCs and involved in the initiation of primary immune responses. AQP7-deficient DCs showed a decreased cellular uptake of low-molecular-mass compounds (fluorescein isothiocyanate and Lucifer yellow) and high-molecular-mass substances (ovalbumin and dextran), suggesting that AQP7 is involved in antigen uptake. AQP7-deficient DCs also exhibited reduced chemokine-dependent cell migration in comparison to wild-type DCs. Consistent with these in vitro results, AQP7-deficient mice demonstrated a reduced accumulation of antigen-retaining DCs in the LNs after antigen application to the skin, which could be attributed to decreased antigen uptake and migration. Coincidentally, AQP7-deficient mice had impaired antigen-induced sensitization in a contact hypersensitivity model. These observations suggested that AQP7 in skin DCs is primarily involved in antigen uptake and in the subsequent migration of DCs and is responsible for antigen presentation and the promotion of downstream immune responses.  相似文献   

14.
Dendritic cells (DCs) play a central role in initiating adaptive immunity. Murine gammaherpesvirus-68 (MHV-68), like many persistent viruses, infects DCs during normal host colonization. It therefore provides a means to understanding what host and viral genes contribute to this aspect of pathogenesis. The infected DC phenotype is likely to depend on whether viral gene expression is lytic or latent and whether antigen presentation is maintained. For MHV-68, neither parameter has been well defined. Here we show that MHV-68 infects immature but not mature bone marrow-derived DCs. Infection was predominantly latent and these DCs showed no obvious defect in antigen presentation. Lytically infected DCs were very different. These down-regulated CD86 and MHC class I expression and presented a viral epitope poorly to CD8(+) T cells. Antigen presentation improved markedly when the MHV-68 K3 gene was disrupted, indicating that K3 fulfils an important function in infected DCs. MHV-68 infects only a small fraction of the DCs present in lymphoid tissue, so K3 expression is unlikely to compromise significantly global CD8(+) T cell priming. Instead it probably helps to maintain lytic gene expression in DCs once CD8(+) T cell priming has occurred.  相似文献   

15.
Immunity to tumors as well as to viral and bacterial pathogens is often mediated by cytotoxic T lymphocytes (CTLs). Thus, the ability to induce a strong cell-mediated immune response is an important requirement of novel immunotherapies. Antigen-presenting cells (APCs), including dendritic cells (DCs), are specialized in initiating T-cell immunity. Harnessing this innate ability of these cells to acquire and present antigens, we sought to improve antigen presentation by targeting antigens directly to DCs in vivo through apoptosis. We engineered Fas-mediated apoptotic death of antigen-bearing cells in vivo by co-expressing the immunogen and Fas in the same cell. We then observed that the death of antigen-bearing cells results in increased antigen acquisition by APCs including DCs. This in vivo strategy led to enhanced antigen-specific CTLs, and the elaboration of T helper-1 (Th1) type cytokines and chemokines. This adjuvant approach has important implications for viral and nonviral delivery strategies for vaccines or gene therapies.  相似文献   

16.
Dendritic cells (DC), which consist of several different subsets, specialize in antigen presentation and are critical for mediating the innate and adaptive immune responses. DC subsets can be classified into conventional, plasmacytoid, and monocyte-derived DC in the tumor microenvironment, and each subset plays a different role. Because of the role of intratumoral DCs in initiating antitumor immune responses with tumor-derived antigen presentation to T cells, DCs have been targeted in the treatment of cancer. By regulating the functionality of DCs, several DC-based immunotherapies have been developed, including administration of tumor-derived antigens and DC vaccines. In addition, DCs participate in the mechanisms of classical cancer therapies, such as radiation therapy and chemotherapy. Thus, regulating DCs is also important in improving current cancer therapies. Here, we will discuss the role of each DC subset in antitumor immune responses, and the current status of DC-related cancer therapies.  相似文献   

17.
Dendritic cells (DCs) act as a portal for virus invasion and as the most potent antigen-presenting cells in antiviral host defense. Human immunodeficiency virus (HIV)-1 has served as the paradigm for virus interaction with DCs. HIV-1 infection of DCs via its primary CD4 receptor and secondary chemokine receptors leads to full virus replication (cis infection), whereas binding to C-type lectin receptors results both in cis replication, as well as transfer and replication of virus in CD4(pos) T cells (trans infection). DCs respond to this invasion by processing viral proteins through MHC class I and II pathways and undergoing a maturation that enhances their presentation of antigen to T cells for induction of adaptive antiviral immunity. HIV-1 and other viruses have evolved mechanisms to subvert this immune function. Engineering of DCs with various forms of viral immunogens and co-treatment with cytokines and chemokines is being used as an immunotherapy for HIV-1 and other viral infections.  相似文献   

18.
Dendritic cells (DCs) are antigen (Ag)-presenting cells that activate and stimulate effective immune responses by T cells, but can also act as negative regulators of these responses and thus play important roles in immune regulation. Pro-angiogenic vascular endothelial growth factor (VEGF) has been shown to cause defective DC differentiation and maturation. Previous studies have demonstrated that the addition of VEGF to DC cultures renders these cells weak stimulators of Ag-specific T cells due to the inhibitory effects mediated by VEGF receptor 1 (VEGFR1) and/or VEGFR2 signalling. As the enzyme indoleamine 2,3-dioxygenase (IDO) is recognised as an important negative regulator of immune responses, this study aimed to investigate whether VEGF affects the expression of IDO by DCs and whether VEGF-matured DCs acquire a suppressor phenotype. Our results are the first to demonstrate that VEGF increases the expression and activity of IDO in DCs, which has a suppressive effect on Ag-specific and mitogen-stimulated lymphocyte proliferation. These mechanisms have broad implications for the study of immunological responses and tolerance under conditions as diverse as cancer, graft rejection and autoimmunity.  相似文献   

19.
How B cells and dendritic cells may cooperate in antigen purification   总被引:1,自引:0,他引:1  
The specificity of the immunological responses is achieved through the cooperation of three classes of cells: B and T lymphocytes, and dendritic cells (DCs). A critical, intensely studied interaction is that between DCs and T cells, during which the DC presents MHC-bound antigenic fragments to the T cell receptor (TCR). There has been recent excitement about the possibility of increasing the signal-to-noise ratio in the detection of cognate antigen-TCR couples, by the use of kinetic proofreading mechanisms. We examine here the signal-to-noise problem in a broader perspective, and in particular, address the question of possible "antigen purification" mechanisms, prior to their presentation to the T cells. Ways in which the DCs might concentrate, purify and preserve their load of captured antigens are considered: (i) If antigens can be transferred from one DC to another, in such a way that the richer a DC in antigen, the more it captures antigens from other DCs, the antigens may end up concentrated in a small subset of DCs, (ii) antigen purification may be achieved through recycling interactions between DCs and B cells. A DC would transmit to a B cell antigen mixtures, and the DC would recapture only the antigens which can bind to the B cell's antibodies and (iii) dendrites, when they are present, may play an essential role in recapturing the antigens that were used in interactions of DCs with T cells, B cells, or other DCs, thereby reducing antigen losses. More generally, we provide a personal interpretation of cell-to-cell antigen transfers, in terms of a strategy in which there is a progressive emergence, through multiple interactions, of subsets of cells of each type better and better prepared for the subsequent rounds of interactions.  相似文献   

20.
Kucukkaya B  Arslan DO  Kan B 《Life sciences》2006,78(11):1217-1224
Heterotrimeric G proteins which couple extracellular signals to intracellular effectors play a central role in cell growth and differentiation. The pluripotent erythroleukemic cell line K562 that acquires the capability to synthesize hemoglobin in response to a variety of agents can be used as a model system for erythroid differentiation. Using Western blot analysis and RT-PCR, we studied alterations in G protein expression accompanying hemin-induced differentiation of K562 cells. We demonstrated the presence of G(alpha s), G(alpha i2) and G(alpha q) and the absence of G(alpha i1), G(alpha o) and G(alpha 16) in K562 cells. We observed the short form of G(alpha s) to be expressed predominantly in these cells. Treatment of K562 cells with hemin resulted in an increase in the levels of G(alpha s) and G(alpha q). On the other hand, the level of G(alpha i2) was found to increase on the third day after induction with hemin, followed by a decrease to levels lower of those of uninduced cells. The mitogen-activated protein kinase ERK1/2 pathway is crucial in the control of cell proliferation and differentiation. Both Gi- and Gq-coupled receptors stimulate MAPK activation. We therefore examined the phosphorylation of ERK1/2 during hemin-induced differentiation of K562 cells. Using anti-ERK1/2 antibodies, we observed that ERK2 was primarily phosphorylated in K562 cells. ERK2 phosphorylation increased gradually until 48 h and returned to basal values by 96 h following hemin treatment. Our results suggest that changes in G protein expression and ERK2 activity are involved in hemin-induced differentiation of K562 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号