首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate whether the mechanical properties of the Achilles tendon were correlated to muscle strength in the triceps surae in humans. Twenty-four men and twelve women exerted maximal voluntary isometric plantar flexion (MVIP) torque. The elongation (DeltaX) and strain of the Achilles tendon (epsilon), the proximal part of which is the composite of the gastrocnemius tendon and the soleus aponeurosis, at MVIP were determined from the displacement of the distal myotendinous junction of the medial gastrocnemius using ultrasonography. The Achilles tendon force at MVIP (F) was calculated from the MVIP torque and the Achilles tendon moment arm. There were no significant differences in either the F-DeltaX or F-epsilon relationships between men and women. DeltaX and epsilon were 9.8 +/- 2.6 mm and 5.3 +/- 1.6%, respectively, and were positively correlated to F (r = 0.39, P < 0.05; r = 0.39, P < 0.05), which meant that subjects with greater muscle strength could store more elastic energy in the tendon. The regression y-intercepts for the F-DeltaX (P < 0.01) and F-epsilon (P < 0.05) relationship were significantly positive. These results might indicate that the Achilles tendon was stiffer in subjects with greater muscle strength, which may play a role in reducing the probability of tendon strain injuries. It was suggested that the Achilles tendon of subjects with greater muscle strength did not impair the potential for storing elastic energy in tendons and may be able to deliver the greater force supplied from a stronger muscle more efficiently. Furthermore, the difference in the Achilles tendon mechanical properties between men and women seemed to be correlated to the difference in muscle strength rather than gender.  相似文献   

2.
The purpose of this technical report is to describe a cost-effective and highly reliable methodology to measure mechanical and material properties of the Achilles tendon. Subjects are positioned on an isokinetic dynamometer time synchronized to a diagnostic ultrasound device. A tendon fascicle distal to the soleus is visualized during a ramped isometric maximal plantarflexion contraction. Excursion of the fascicle and tendon torque output yield a force-elongation curve in which mechanical characteristics and material properties are derived. Excellent intrasession and intersession reliabilities were observed for both the dynamometer (intraclass correlation coefficient [ICC] 0.99, 0.95) and excursion (ICC 0.99, 0.93) measures. Practical applications for this methodology include examination of training regimes for optimal tendon adaptation and rehabilitation in the presence of tendinopathy.  相似文献   

3.
The prevalence of Achilles tendon (AT) injury is high in various sports, and AT rupture patients have been reported to have a 200-fold risk of sustaining a contralateral rupture. Tendon adaptation to different exercise modes is not fully understood. The present study investigated the structural properties of the AT in male elite athletes that subject their AT to different exercise modes as well as in Achilles rupture patients. Magnetic resonance imaging of the foot and leg, anthropometric measurements, and maximal isometric plantar flexion force were obtained in 6 male AT rupture patients and 25 male elite athletes (kayak/control group n = 9, volleyball n = 8 and endurance running n = 8). AT cross-sectional area (CSA) was normalized to body mass. Runners had a larger normalized AT CSA along the entire length of the tendon compared with the control group (P < 0.05). The volleyball subjects had a larger normalized CSA compared with the control group (P < 0.05) in the area of thinnest tendon CSA. No structural differences of the AT were found in the rupture subjects compared with the control group. Rupture subjects did not subject their AT to greater force or stress during a maximal voluntary isometric plantar flexion than the other groups. The CSA of the triceps surae musculature was the strongest predictor of AT CSA (r(s) = 0.569, P < 0.001). This study is the first to show larger CSA in tendons that are subjected to intermittent high loads. AT rupture patients did not display differences in structural or loading properties of the tendons.  相似文献   

4.
Tendon stiffness is calculated by dividing changes in tendon force by tendon elongation. For this purpose, participants are commonly asked to perform a maximal muscle contraction (“active” method). Alternatively tendon elongation can be achieved by means of a passive joint rotation (“passive” method). The purpose of this study was to compare Achilles tendon stiffness obtained from both methods across different tendon strain rates. Twenty adults performed a series of ramped maximum isometric plantarflexions of different durations. Passive ankle rotations of different angular velocities were also performed. Achilles tendon stiffness was obtained from a combination of motion analysis, isokinetic dynamometry and ultrasonography and compared across methods at three strain rates. At all strain rates, tendon stiffness obtained from the active method was 6% greater compared to the passive method. In spite of this systematic bias, there was good agreement between the methods. Intraclass correlation coefficients were greater than 0.98, and more than 95% of data points fell into the 95% confidence intervals. This agreement will be acceptable in many research contexts. We also found a linear increase in tendon stiffness with increasing strain rate, which must be taken into consideration when interpreting or reporting tendon stiffness.  相似文献   

5.
1. The plasma clearance of intravenously injected 125I-labelled mitochondrial malate dehydrogenase (half-life 7 min) was not influenced by previous injection of suramin and/or leupeptin (inhibitors of intralysosomal proteolysis). 2. Pretreatment with both inhibitors considerably delayed degradation of endocytosed enzyme in liver, spleen, bone marrow and kidneys. 3. The tissue distribution of radioactivity was determined at 30 min after injection, when only 3% of the dose was left in plasma. All injected radioactivity was still present in the carcass. The major part of the injected dose was found in liver (49%), spleen (5%), kidneys (13%) and bone, including marrow (11%). 4. Liver cells were isolated 15 min after injection of labelled enzyme. We found that Kupffer cells and parenchymal cells had endocytosed the enzyme at rates corresponding to 9530 and 156 ml of plasma/day per g of cell protein respectively. Endothelial cells do not significantly contribute to uptake of the enzyme. 5. Uptake by Kupffer cells was saturable, whereas uptake by parenchymal cells was not. This suggests that these cell types endocytose the enzyme via different receptors. 6. Previous injection of carbon particles greatly decreased uptake of the enzyme by liver, spleen and bone marrow.  相似文献   

6.
The present study investigated the mechanical properties of tendon fascicles from the anterior and posterior human patellar tendon. Collagen fascicles from the anterior and posterior human patellar tendon in healthy young men (mean +/- SD, 29.0 +/- 4.6 yr, n = 6) were tested in a mechanical rig. A stereoscopic microscope equipped with a digital camera recorded elongation. The fascicles were preconditioned five cycles before the failure test based on pilot data on rat tendon fascicle. Human fascicle length increased with repeated cycles (P < 0.05); cycle 5 differed from cycle 1 (P < 0.05), but not cycles 2-4. Peak stress and yield stress were greater for anterior (76.0 +/- 9.5 and 56.6 +/- 10.4 MPa, respectively) than posterior fascicles (38.5 +/- 3.9 and 31.6 +/- 2.9 MPa, respectively), P < 0.05, while yield strain was similar (anterior 6.8 +/- 1.0%, posterior 8.7 +/- 1.4%). Tangent modulus was greater for the anterior (1,231 +/- 188 MPa) than the posterior (583 +/- 122 MPa) fascicles, P < 0.05. In conclusion, tendon fascicles from the anterior portion of the human patellar tendon in young men displayed considerably greater peak and yield stress and tangent modulus compared with the posterior portion of the tendon, indicating region-specific material properties.  相似文献   

7.
Whether the cross-sectional area (CSA) and mechanical properties of the human Achilles tendon change in response to habitual exercise remains largely unexplored. The present study evaluated the CSA and contraction-induced displacement of the aponeurosis-tendon complex of the triceps surae in 11 untrained subjects before (tests 1 and 2) and after (test 3) approximately 9 mo of regular running ( approximately 78 training sessions). Displacement of the tendon-aponeurosis complex obtained by ultrasonography; electromyography of the gastrocnemius, soleus, and dorsiflexor muscles; and joint angular rotation were recorded during graded isometric plantarflexion ramps. Tendon CSA and moment arm were measured by using MRI, and tendon force was calculated from joint moments and tendon moment arm. A treadmill test was used to determine submaximal oxygen consumption (Vo2) at a given speed and maximal Vo2. The total running duration was approximately 43 h, distributed over 34 wk. Maximal Vo2 increased 8.6% (P < 0.01), and submaximal Vo2 decreased 6.2% (P < 0.05). Tendon-aponeurosis displacement during maximal voluntary contraction was unchanged (tests 1-3, 5.2 +/- 0.6, 5.2 +/- 0.5, and 5.3 +/- 0.4 mm, respectively) and yielded a structural stiffness of 365 +/- 50, 358 +/- 40, and 384 +/- 52 N/mm for tests 1-3, respectively (P > 0.05). Tendon CSA also remained unchanged (tests 1-3, 34.2 +/- 2.2, 33.9 +/- 2.2, and 33.8 +/- 2.1 mm2, respectively). In conclusion, a total training stimulus of approximately 9 mo of running in previously untrained subjects was adequate to induce significant cardiovascular improvements, although it did not result in any changes in the mechanical properties of the triceps surea tendon-aponeurosis complex or in the dimensions of Achilles tendon.  相似文献   

8.
Damage accumulation underlies tendinopathy. Animal models of overuse injuries do not typically control loads applied to the tendon. Our in vivo model in the rat patellar tendon allows direct control of the loading applied to the tendon. Despite this advantage, natural variation among tendons results in different amounts of damage induced by the same loading protocol. Our objectives were to (1) assess changes in the initial mechanical parameters (hysteresis, stiffness of the loading and unloading load-displacement curves, and elongation) after fatigue loading to identify parameters that are indicative of the induced damage, and (2) evaluate the relationships between these identified initial damage indices with the stiffness 7 day after loading. Left patellar tendons of adult, female retired breeder, Sprague-Dawley rats (n = 68) were fatigue loaded per our previously published in vivo fatigue loading protocol. To induce a range of damage, fatigue loading consisted of either 5, 100, 500 or 7200 cycles that ranged from 1 N to 40 N. Diagnostic tests were applied before and immediately after fatigue loading, and after 45 min of recovery to deduce recoverable and non-recoverable changes in initial damage indices. Relationships between these initial damage indices and the 7-day stiffness (at sacrifice) were determined. Day-0 hysteresis, loading and unloading stiffness exhibited cycle-dependent changes. Initial hysteresis loss correlated with the 7-day stiffness. k-means cluster analysis demonstrated a relationship between 7-day stiffness and day-0 hysteresis and unloading stiffness. This analysis also separated samples that exhibited low from high damage in response to both high or low number of cycles; a key delineation for interpretation of the biological response in future studies. Identifying initial parameters that reflect the induced damage is critical since the ability of the tendon to repair depends on the damage induced and the number of applied loading cycles.  相似文献   

9.
Compared with muscle or bone, there is a lack of information about the relationship between tendon adaptation and the applied loading characteristic. The purpose of the present study was to analyze the effect of different exercise modes characterized by very distinct loading patterns on the mechanical, morphological, and biochemical properties of the Achilles tendon. Sixty-four female Sprague-Dawley rats were divided into five groups: nonactive age-matched control (AMC; n = 20), voluntary wheel running (RT; n = 20), vibration strength-trained (LVST; n = 12), high-vibration strength-trained (HVST; n = 6), and high strength-trained (HST; n = 6) group. After a 12-wk-long experimental period, the Achilles tendon was tested mechanically and the cross-sectional area, the soleus and gastrocnemius muscle mass, and mRNA concentration of collagen I, collagen III, tissue inhibitor of metalloproteinase-1 (TIMP-1), transforming growth factor-beta, connective tissue growth factor, and matrix metalloproteinase-2 was determined. Neither in the LVST nor in the HVST group could any adaptation of the Achilles tendon be detected, although the training had an effect on the gastrocnemius muscle mass in the LVST group (P < 0.05). In the HST group, the highest creep was found, but the effect was more pronounced compared with the LVST group (P < 0.05) than with the AMC group. That indicates that this was rather induced by the low muscle mass rather than by training. However, the RT group had a higher TIMP-1 mRNA concentration in the Achilles tendon in contrast to AMC group (P < 0.05), which suggests that this exercise mode may have an influence on tendon adaptation.  相似文献   

10.
11.
Overuse Achilles tendinopathy is a common and challenging problem in sports medicine. Little is known about the etiology of this disorder, and the development of a good animal model for overuse tendinopathy is essential for advancing insight into the disease mechanisms. Our aim was to test a previously proposed rat model for Achilles tendon overuse. Ten adult male Sprague-Dawley rats ran on a treadmill with 10° incline, 1 h/day, 5 days/wk (17-20 m/min) for 12 wk and were compared with 12 control rats. Histological, mechanical, and gene-expression changes were measured on the Achilles tendons after the intervention, and local tendon glucose-uptake was measured before and after the intervention with positron emission tomography. No differences were detected between runners and controls in tissue histology or in glucose uptake, indicating that tendon pathology was not induced. Greater tendon tissue modulus (P < 0.005) and failure stress/body weight (P < 0.02) in runners compared with controls further supported that tendons successfully adapted to uphill running. Several genes of interest were regulated after 12 wk of running. Expression of collagen III and insulin-like growth factor I was increased, while collagen I was unchanged, and decreases were seen in noncollagen matrix components (fibromodulin and biglycan), matrix degrading enzymes, transforming growth factor-β1, and connective tissue growth factor. In conclusion, the tested model could not be validated as a model for Achilles tendinopathy, as the rats were able to adapt to 12 wk of uphill running without any signs of tendinopathy. Improved mechanical properties were observed, as well as changes in gene-expression that were distinctly different from what is seen in tendinopathy and in response to short-term tendon loading.  相似文献   

12.
Achilles tendon injuries affect both athletes and the general population, and their incidence is rising. In particular, the Achilles tendon is subject to dynamic loading at or near failure loads during activity, and fatigue induced damage is likely a contributing factor to ultimate tendon failure. Unfortunately, little is known about how injured Achilles tendons respond mechanically and structurally to fatigue loading during healing. Knowledge of these properties remains critical to best evaluate tendon damage induction and the ability of the tendon to maintain mechanical properties with repeated loading. Thus, this study investigated the mechanical and structural changes in healing mouse Achilles tendons during fatigue loading. Twenty four mice received bilateral full thickness, partial width excisional injuries to their Achilles tendons (IACUC approved) and twelve tendons from six uninjured mice were used as controls. Tendons were fatigue loaded to assess mechanical and structural properties simultaneously after 0, 1, 3, and 6 weeks of healing using an integrated polarized light system. Results showed that the number of cycles to failure decreased dramatically (37-fold, p<0.005) due to injury, but increased throughout healing, ultimately recovering after 6 weeks. The tangent stiffness, hysteresis, and dynamic modulus did not improve with healing (p<0.005). Linear regression analysis was used to determine relationships between mechanical and structural properties. Of tendon structural properties, the apparent birefringence was able to best predict dynamic modulus (R2=0.88–0.92) throughout healing and fatigue life. This study reinforces the concept that fatigue loading is a sensitive metric to assess tendon healing and demonstrates potential structural metrics to predict mechanical properties.  相似文献   

13.
We studied the effect of cyclic mechanical stretching on the proliferation and collagen mRNA expression and protein production of human patellar tendon fibroblasts under serum-free conditions. The role of transforming growth factor-beta1 (TGF-beta1) in collagen production by cyclically stretched tendon fibroblasts was also investigated. The tendon fibroblasts were grown in microgrooved silicone dishes, where the cells were highly elongated and aligned with the microgrooves. Cyclic uniaxial stretching with constant frequency and duration (0.5 Hz, 4 h) but varying magnitude of stretch (no stretch, 4%, and 8%) was applied to the silicone dishes. Following the period of stretching, the cells were rested for 20 h in stretching-conditioned medium to allow for cell proliferation. In separate experiments, the cells were stretched for 4h and then rested for another 4 h. Samples of the medium, total cellular RNA and protein were used for analysis of collagen and TGF-beta1 gene expression and production. It was found that there was a slight increase in fibroblast proliferation at 4% and 8% stretch, compared to that of non-stretched fibroblasts, where at 8% stretch the increase was significant. It was also found that the gene expression and protein production of collagen type I and TGF-beta1 increased in a stretching-magnitude-dependent manner. And, levels of collagen type III were not changed, despite gene expression levels of the protein being slightly increased. Furthermore, the exogenous addition of anti-TGF-beta1 antibody eliminated the increase in collagen type I production under cyclic uniaxial stretching conditions. The results suggest that mechanical stretching can modulate proliferation of human tendon fibroblasts in the absence of serum and increase the cellular production of collagen type I, which is at least in part mediated by TGF-beta1.  相似文献   

14.

Background

Fibrochondrocytes are involved in entheses repair, but their response to mechanical strain (MS) is ill known.

Objective

To determine if parathyroid hormone-related protein (PTHrP) expression in fibrochondrocytes from fibrocartilaginous entheses is modulated by MS, and to further observe the regulatory effects of human (h) PTHrP on fibrochondrocyte differentiation.

Methods

Fibrochondrocytes from fibrocartilaginous entheses of Guizhou miniature pig?s Achilles tendon were submitted or not to MS (4%, 8% or 12% cyclic tensile strain; 1 Hz). Fibrochondrocytes were also exposed to: cyclopamine (Indian hedgehog (Ihh) inhibitor) (10 μM), hPTHrP (10 nM) or cyclopamine/hPTHrP (cyclopamine 10uM+hPTHrP 10 nM). Types I, II and X collagen and PTHrP expressions were measured by real-time RT-PCR and Western blot.

Result

Under 4% strain load for 12 h, types I and II collagen mRNA expressions were increased (+324% and +659%, P<0.001), while type X collagen was decreased (−89%, P<0.001). At 12%, types I and II collagen mRNA expressions were decreased (−62% and −62%, P<0.001), while type X collagen was increased (+375%, P<0.05). Under 4% strain load, PTHrP mRNA expression was increased in relation with strain duration (from 3 to 12 h: +168%, P<0.001), while at 12%, PTHrP expression decreased with time (from 3 to 12 h: −81%, P<0.001). Using cyclopamine for 24 h, PTHrP mRNA expression was significantly decreased (−88%, P<0.05), types I and II collagen were decreased (−90% and −82%, P<0.001), and type X collagen was increased (+261%, P<0.001).

Conclusions

Dynamic MS modulate PTHrP expressions. Thus, PTHrP might play an important role in fibrochondrocyte differentiation, indirectly revealing a role in entheses? formation and repair.  相似文献   

15.
Mesenchymal stem cells produce proinflammatory cytokines during their normal growth. Direct or indirect regulation of bone resorption by these cytokines has been reported. However, the effects of osteogenic conditions—chemical and/or mechanical—utilized during in vitro bone tissue engineering on expression of cytokines by hMSCs have not been studied. In this study, we investigated the effects of cyclic tensile strain, culture medium (with and without dexamethasone), and culture duration on the expression of tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), interleukin‐6 (IL‐6), and interleukin‐8 (IL‐8) by bone marrow derived human mesenchymal stem cells (hMSCs). Human MSCs seeded in three‐dimensional Type I collagen matrices were subjected to 0%, 10%, and 12% uniaxial cyclic tensile strains at 1 Hz for 4 h/day for 7 and 14 days in complete growth or dexamethasone‐containing osteogenic medium. Viability of hMSCs was maintained irrespective of strain level and media conditions. Expression of either TNF‐α or IL‐1β was not observed in hMSCs under any of the conditions investigated in this study. Expression of IL‐6 was dependent on culture medium. An increase in IL‐6 expression was caused by both 10% and 12% strain levels. Both 10% and 12% strain levels caused an increase in IL‐8 production by hMSCs that was dependent on the presence of dexamethasone. IL‐6 and IL‐8 expressions by hMSCs were induced by cyclic tensile strain and osteogenic differentiating media, indicating that IL‐6 and IL‐8 may be functioning as autocrine signals during osteogenic differentiation of hMSCs. J. Cell. Physiol. 219: 77–83, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
The Achilles tendon (AT) moment arm is an important determinant of ankle moment and power generation during locomotion. Load and depth-dependent variations in the AT moment arm are generally not considered, but may be relevant given the complex triceps surae architecture. We coupled motion analysis and ultrasound imaging to characterize AT moment arms during walking in 10 subjects. Muscle loading during push-off amplified the AT moment arm by 10% relative to heel strike. AT moment arms also varied by 14% over the tendon thickness. In walking, AT moment arms are not strictly dependent on kinematics, but exhibit important load and spatial dependencies.  相似文献   

17.
Owing to a complex morphological investigation of the human Achilles tendon, it was possible to distinguish four levels of the structural-functional organization of its fibrous elements and to reveal some regularities of their structure that recur at all the levels. Thus, collagenous molecules, microfibrillae, fibrillae and fibers have a wavy-spiral conformation. This spatial form is stabilized by a complex or a system of transversal connections corresponding to the given level of the organization. In order to maintain integrity (the structural-functional unity) of each level, certain substances of polysaccharide nature take part. Along the course of the long tendinous axis, a re-distribution (branching) of the fibrillar elements is observed at all the levels of the structural-functional organization.  相似文献   

18.
The redistribution of water in response to static tensile loading was investigated in rabbit Achilles tendons in vitro. The distribution of water was measured along a radially oriented line, using a one-dimensional proton-density map created from fits to diffusion-weighted magnetic resonance (MR) data. Water movements were measured during application of tensile loads of 5N (N=7) and 10N (N=6). Water distribution along the line was measured before loading and up to 42 min after load application. Static loading with either 5 or 10N loads caused a steady increase in proton density in the outside edge (rim) of the tendon. The 10N load lowered the proton density in the core of the tendon, but did so in a single step that was observed when the load was applied. The 5N load caused no change in proton density in the core region. The immediate redistribution from the core was statistically significant for the 10N load, but not the 5N load application. Statistically significant within-group proton-density increases were observed in the rim after 42 min postload for all tendons irrespective of load condition. The rate of proton-density postload increase at the rim region did not depend upon load. The rate for the 5N load case was 0.010 +/- 0.002 min(-1) and 0.007 +/- 0.002 min(-1) in the 10N case. Thus, while generally consistent with an extrusion model, the data show other features that argue for a more complex model.  相似文献   

19.
20.
Human acellular dermal matrices (ADMs) are used successfully in a variety of procedures, including sports medicine related, wound repair, and breast reconstructions, but the mechanism of repair is still not fully understood. An opportunity to explore this mechanism presented itself when a patient experienced a rerupture of the native tendon due to a fall that occurred 2 months after undergoing an Achilles tendon repair using Matracell treated ADM. The ADM was removed and an extensive histology analysis was performed on the tissue. Additionally, a literature review was conducted to determine the mechanism of ADM integration into the tendon structure and explore if differences in this mechanism exist for different types of human ADMS. The histology analysis demonstrated that the healing process during a tendon reconstruction procedure is similar to that of wound healing. Furthermore, the literature review showed that differences exist in the mechanism for integration among various human ADMs and that these differences may be due to variances in the methods and technologies that manufactures use to process human ADMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号