共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu Xu Chien-Chi Chang Gert S. Faber Idsart Kingma Jack T. Dennerlein 《Journal of biomechanics》2010,43(10):2043-2048
Video-based field methods that estimate L5/S1 net joint moments from kinematics based on interpolation in the sagittal plane of joint angles alone can introduce a significant error on the interpolated joint angular trajectory when applied to asymmetric dynamic lifts. Our goal was to evaluate interpolation of segment Euler angles for a wide range of dynamic asymmetric lifting tasks using cubic spline methods by comparing the interpolated values with the continuous measured ones. For most body segments, the estimated trajectories of segment Euler angles have less than 5° RMSE (in each dimension) with 5-point cubic spline interpolation when there is no measurement error of interpolation points. Sensitivity analysis indicates that when the measurement error exists, the root mean square error (RMSE) of estimated trajectories increases. Comparison among different lifting conditions showed that lifting a load from a high initial position yielded a smaller RMSE than lifting from a low initial position. In conclusion, interpolation of segment Euler angles can provide a robust estimation of segment angular trajectories during asymmetric lifting when measurement error of interpolation points can be controlled at a low level. 相似文献
2.
Abdoli-Eramaki M Stevenson JM Agnew MJ Kamalzadeh A 《Computer methods in biomechanics and biomedical engineering》2009,12(2):227-237
The purpose of this study was to validate a 3D dynamic virtual model for lifting tasks against a validated link segment model (LSM). A face validation study was conducted by collecting x, y, z coordinate data and using them in both virtual and LSM models. An upper body virtual model was needed to calculate the 3D torques about human joints for use in simulated lifting styles and to estimate the effect of external mechanical devices on human body. Firstly, the model had to be validated to be sure it provided accurate estimates of 3D moments in comparison to a previously validated LSM. Three synchronised Fastrak units with nine sensors were used to record data from one male subject who completed dynamic box lifting under 27 different load conditions (box weights (3), lifting techniques (3) and rotations (3)). The external moments about three axes of L4/L5 were compared for both models. A pressure switch on the box was used to denote the start and end of the lift. An excellent agreement [image omitted] was found between the two models for dynamic lifting tasks, especially for larger moments in flexion and extension. This virtual model was considered valid for use in a complete simulation of the upper body skeletal system. This biomechanical virtual model of the musculoskeletal system can be used by researchers and practitioners to give a better tool to study the causes of LBP and the effect of intervention strategies, by permitting the researcher to see and control a virtual subject's motions. 相似文献
3.
O D Schipplein J H Trafimow G B Andersson T P Andriacchi 《Journal of biomechanics》1990,23(9):907-912
A study was performed to determine the influence of load magnitude on the self selected technique of lifting. Specifically, it was hypothesized that with heavier weights a tendency would occur to lift more with the back and less with the legs. Flexion-extension moments at the L5/S1 level, hip and knee joints were calculated for subjects when lifting boxes weighing from 50 to 250 N. Lifts were performed using a freestyle technique at normal speed. The moment profiles (moment plotted vs time) were analyzed kinematically and as a function of the weight lifted. The kinematics of the lift changed as the weight increased. The moment at the L5/S1 level increased with increasing weight, however, the corresponding knee moment decreased. Thus, an inverse relationship was found between the moment at the L5/S1 level and the knee joint moment. An increase in weight lifted was also associated with an increase in the angular velocity at the knee while lifting. Apparently with heavier weights there is a tendency to extend the knees earlier during the lift than with lighter weights, confirming our hypothesis. This explains the reduced knee moment. Our findings lead to the hypothesis that quadriceps muscle strength limits the subjects' ability to lift with their knees flexed. 相似文献
4.
David M. Frost Mohammad Abdoli-E Joan M. Stevenson 《Journal of electromyography and kinesiology》2009,19(6):e403-e412
The PLAD (personal lift assistive device) was designed to reduce the lumbar moment during lifting and bending tasks via elastic elements. This investigation examined the effects of modulating the elastic stiffness. Thirteen men completed 90 lifts (15 kg) using 6 different PLAD stiffnesses in stoop, squat and freestyle lifting postures. The activity of 8 muscles were recorded (latissimus dorsi, thoracic and lumbar erector spinae, rectus abdominis, external oblique, gluteus maximus, biceps femoris and rectus femoris), 3D electromagnetic sensors tracked the motion of each segment and strain gauges measured the elastic tension. EMG data were rectified, filtered, normalized and integrated as a percentage of the lifting task. The highest PLAD tension elicited the greatest reduction in erector spinae activity (mean of thoracic and lumbar) in comparison to the no-PLAD condition for the stoop (37%), squat (38%), and freestyle (37%) lifts, while prompting comparable reductions in gluteus maximums and biceps femoris activity. The highest PLAD stiffness also elicited the greatest reduction in the integrated L4/L5 flexion moment for the stoop (19.0%), squat (18.4%) and freestyle (17.4%) lifts without changing peak lumbar flexion. Each increase in PLAD stiffness further reduced the muscle activity of the posterior chain and the dynamic lumbar moment. 相似文献
5.
Ginette Courtois Gilles Paradis Anne Barden Gérald Lemieux 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1982,696(1):87-93
The phosphate content of ribosomal proteins S3, L1 and L24 has been determined in the course of spherulation of Physarum polycephalum. The major phosphoprotein, S3, was completely dephosphorylated after 4 h of differentiation. The phosphate content of L1 and L24 was not altered during the differentiation. The cellular level of ATP remained constant for at least 5 h. A 3-fold reduction of cyclic AMP concentration occurred in the first hour, followed by a slow increase to a final value of twice the level observed in growing cells. The results showed that the phosphorylation of ribosomal proteins is regulated by at least two different mechanisms and that the dephosphorylation of S3 is not induced by a lack of cellular ATP. Although cyclic AMP might trigger the dephosphorylation of S3, the phosphate content of this protein remained at a very low value even when the cellular concentration of cyclic AMP rose significantly. Since the polysome level remains constant during the first 24 h of spherulation, the phosphorylation of S3 is not necessary for active protein synthesis and the phosphorylation of L1 and L24 is not involved in ribosome inactivation, which occurs after 24 h. 相似文献
6.
Molecular weight and net charge of peroxidase isozymes in F1 hybrids between L and S flax genotrophs
In the F1 hybrids between Durrant's L and Durrant's S flax genotrophs, the relative mobilities of the anionic peroxidase isozymes were essentially the same as those in the L parent. The isozymes in both parents and their F1's were compared over a range of acrylamide gel concentrations, with plots of log relative mobility against gel concentration. Plots of comparative mobility, relative to the internal standard hemoglobin, against concentration were also examined. Both approaches provided evidence that apparent molecular weight modifications underlay the shift in mobility between the parents and the resemblance of the F1's to L, the parent which was homozygous for the dominant alleles controlling the mobility shift for at least two of the isozymes. 相似文献
7.
Gongadze GM Perederina AA Meshcheriakov VA Fedorov RV Moskalenko SE Rak AV Serganov AA Shcherbakov DV Nikonov SV Garber MB 《Molekuliarnaia biologiia》2001,35(4):610-616
Three 5S rRNA-binding ribosomal proteins (L5, L18, TL5) of extremely thermophilic bacterium Thermus thermophilus have earlier been isolated. Structural analysis of their complexes with rRNA requires identification of their binding sites in the 5S rRNA. Previously, a TL5-binding site has been identified, a TL5-RNA complex crystallized, and its structure determined to 2.3 A. The sites for L5 and L18 were characterized, and two corresponding 5S rRNA fragments constructed. Of these, a 34-nt fragment specifically interacted with L5, and a 55-nt fragment interacted with L5, L18, and with both proteins. The 34-nt fragment-L5 complex was crystallized; the crystals are suitable for high-resolution X-ray analysis. 相似文献
8.
RNA-protein interactions of stored 5S RNA with TFIIIA and ribosomal protein L5 during Xenopus oogenesis 总被引:5,自引:0,他引:5
We studied the pathway of 5S RNA during oogenesis in Xenopus laevis from its storage in the cytoplasm to accumulation in the nucleus, the sequence requirements for the 5S RNA to follow that pathway, and the 5S RNA-protein interactions that occur during the mobilization of stored 5S RNA for assembly into ribosomes. In situ hybridization to sections of oocytes indicates that 5S RNA first becomes associated with the amplified nucleoli during vitellogenesis when the nucleoli are activity synthesizing ribosomal RNA and assembling ribosomes. When labeled 5S RNA is microinjected into the cytoplasm of stage V oocytes, it migrates into the nucleus, whether microinjected naked or complexed with the protein TFIIIA as a 7S RNP storage particle. During vitellogenesis, a nonribosome bound pool of 5S RNA complexed with ribosomal protein L5 (5S RNPs) is formed, which is present throughout the remainder of oogenesis. Immunoprecipitation assays on homogenates of microinjected oocytes showed that labeled 5S RNA can become complexed either with L5 or with TFIIIA. Nucleotides 11 through 108 of the 5S RNA molecule provide the necessary sequence and conformational information required for the formation of immunologically detectable complexes with TFIIIA or L5 and for nuclear accumulation. Furthermore, labeled 5S RNA from microinjected 7S RNPs can subsequently become associated with L5. Such labeled 5S RNA is found in both 5S RNPs and 7S RNPs in the cytoplasm, but only in 5S RNPs in the nucleus of microinjected oocytes. These data suggest that during oogenesis a major pathway for incorporation of 5S RNA into nascent ribosomes involves the migration of 5S RNA from the nucleus to the cytoplasm for storage in an RNP complex with TFIIIA, exchange of that protein association for binding with ribosomal protein L5, and a return to the nucleus for incorporation into ribosomes as they are being assembled in the amplified nucleoli. 相似文献
9.
Prior to ribosome assembly, 5S ribosomal RNA (5S rRNA) binds to ribosomal protein L5 to form a stable ribonucleoprotein particle (5S RNP). We have analyzed the role of L5 binding in the nuclear targeting of 5S rRNA inXenopusoocytes, and have compared the nuclear import pathway of 5S RNPs with other karyophilic molecules. Nuclear import ofin vitro-generated 5S RNPs was found to be sensitive to three general inhibitors of nuclear pore complex-mediated translocation: ATP depletion, chilling, and wheat germ agglutinin. The initial rate and extent of net nuclear import was threefold greater with preassembled 5S RNPs than with 5S rRNA microinjected alone, suggesting that L5 binding is a prerequisite for nuclear accumulation. Nuclear import of 5S rRNA/5S RNPs is a facilitated process dependent on limiting factors, since nuclear import exhibited saturation kinetics. Not only was nuclear import of labeled 5S rRNA reduced in the presence of excess unlabeled 5S rRNA, but also in the presence of the synthetic karyophilic protein P(lys)-BSA. In contrast, import was not inhibited by U1 small nuclear RNA (snRNA) or U3 small nucleolar RNA (snoRNA). 5S rRNA/5S RNP nuclear import therefore appears to follow a pathway of molecular interactions similar to many karyophilic proteins, but not the methylguanosine cap-dependent U1 snRNA pathway or the cap-independent U3 snoRNA pathway. 相似文献
10.
KCNE1 and KCNE3 stabilize and/or slow voltage sensing S4 segment of KCNQ1 channel 总被引:1,自引:1,他引:1
下载免费PDF全文

KCNQ1 is a voltage-dependent K(+) channel whose gating properties are dramatically altered by association with auxiliary KCNE proteins. For example, KCNE1, which is mainly expressed in heart and inner ear, markedly slows the activation kinetics of KCNQ1. Whether the voltage-sensing S4 segment moves differently in the presence of KCNE1 is not yet known, however. To address that question, we systematically introduced cysteine mutations, one at a time, into the first half of the S4 segment of human KCNQ1. A226C was found out as the most suited mutant for a methanethiosulfonate (MTS) accessibility analysis because it is located at the N-terminal end of S4 segment and its current was stable with repetitive stimuli in the absence of MTS reagent. MTS accessibility analysis revealed that the apparent second order rate constant for modification of the A226C mutant was state dependent, with faster modification during depolarization, and was 13 times slower in the presence of KCNE1 than in its absence. In the presence of KCNE3, on the other hand, the second order rate constant for modification was not state dependent, indicating that the C226 residue was always exposed to the extracellular milieu, even at the resting membrane potential. Taken together, these results suggest that KCNE1 stabilizes the S4 segment in the resting state and slows the rate of transition to the active state, while KCNE3 stabilizes the S4 segment in the active state. These results offer new insight into the mechanism of KCNQ1 channel modulation by KCNE1 and KCNE3. 相似文献
11.
The purpose of this study was to add to the growing database of cross-sectional areas and moment arm lengths of trunk musculature using the methods of computerized tomographic scanning. An attempt was also made to estimate muscle force and moment generating capacity under various reported values of muscle force per unit cross-sectional area. The data were obtained on 13 active men 40.5 +/- 11.9 years of age, 173.8 +/- 5.9 cm tall and 89.1 +/- 11.7 kg body mass. Transverse CT scans were taken at the level of the L4/L5 disc with the subjects supine. Muscle cross-sectional areas were measured from 35 mm slides of the scans using a planimeter and moment arm length in the transverse plane were taken from the centroid of the L4/L5 disc to the centroid of the muscle section. Prior to estimating force and moment generating capacity, areas were corrected, where necessary, for fibre pennation angle to produce a physiological cross-sectional area. The physiological cross-sectional areas (cm2) for one side of the body were (mean +/- S.D.): sacrospinalis (SS) 15.9 +/- 2.5; multifidus (Mu) 4.2 +/- 0.7; psoas (Ps) 17.6 +/- 4.0; rectus abdominis (RA) 7.9 +/- 2.5; external oblique (EO) 9.4 +/- 2.7; internal oblique (IO) 8.1 +/- 2.3; transverse abdominus (TA) 2.9 +/- 1.3. The anterior posterior moment arm lengths were: erector mass (SS and Mu combined) 5.90 +/- 0.52; Ps 0.58 +/- 0.40; R.A. 10.28 +/- 2.07; E.O. (anterior portion) 5.94 +/- 1.39; E.O. (posterior portion) 2.08 +/- 1.39; I.O. (anterior portion) 6.92 +/- 1.63; I.O. (posterior portion) 3.85 +/- 1.54. The corresponding lateral moment arm lengths were: 3.26 +/- 0.36; 4.88 +/- 0.36; 4.35 +/- 1.31; 12.86 +/- 1.93; 13.95 +/- 1.16; 10.77 +/- 2.02; 12.52 +/- 1.26. The maximum force per unit cross-section that human muscles are capable of generating is not well defined. However, assuming an intermediate value of 50 N cm-2 of physiological cross-section, the erector musculature observed at the L4/L5 level should be capable of generating an extensor moment of about 118 N.m. At a muscle stress of 30 or 90 N cm-2, values also reported on human muscle, the moment would be 71 and 213 Nm, respectively. It must be remembered, however, that muscles not observable at the L4/L5 level can create moments around that center of rotation.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
12.
Smith TA Strelkov SV Burkhard P Aebi U Parry DA 《Journal of structural biology》2002,137(1-2):128-145
A comprehensive analysis of the sequences of all types of intermediate filament chains has been undertaken with a particular emphasis on those of segment 1A and linker L1. This has been done to assess whether structural characteristics can be recognized in the sequences that would be consistent with the role of each region in the recently proposed "swinging head" hypothesis. The analyses show that linker L1 is the most flexible rod domain region, that it is the most elongated structure (on a per residue basis), and that it is the most variable region as regards sequence and length. Segment 1A has one of the two most highly conserved regions of sequence in the rod domain (the other being at the end of segment 2B), with seven particular residues conserved across all chain types. It also contains one of the very few potential interchain ionic interactions that could be conserved across all chain types. However, the aggregation of chains in segment 1A is specified less precisely overall by interchain ionic interactions than are the other coiled-coil segments. The apolar residue contents in positions a and d of the heptad substructure are the highest of any coiled-coil segment in the intermediate filament family. Segment 1A also displays an amino acid composition atypical of not only coiled-coil segments 1B and 2B, but indeed of two-stranded coiled coils in general. Nonetheless, molecular modeling based on the crystal structure of the monomeric 1A fragment from human vimentin shows that coiled-coil formation is plausible. The most extensive regions of apolar/aromatic residues lie at the C-terminal end of segment 2B in the helix termination motif and in segment 1A in and close to the helix initiation motif. The predicted stability of the individual alpha-helices in segment 1A is greater than in those comprising segments 1B and 2B, though potential intrachain ionic interactions are either lacking or are minimal in number. Analysis of the 1A sequence and those regions immediately N- and C-terminal to it has shown that the capping residues are near optimal close to the previously predicted ends, thus adding to the likely stability of the alpha-helical structure. However, a second terminating sequence is predicted in 1A (about 10 residues back from the C-terminus). This allows the possibility of some unwinding of the alpha-helical structure of 1A immediately adjacent to linker L1 when the head domains no longer stabilize the coiled-coil structure. All of these data are consistent with the concept of a flexible hinge at L1 and with the ability of the two alpha-helical coiled-coil strands to separate under appropriate conditions and partly unwind at their C-terminal ends to allow the head domains a greater degree of mobility, thus facilitating function. 相似文献
13.
14.
50 S ribosomal subunit derivatives without the 5 S RNA-protein complex obtained either by splitting with EDTA or by reconstitution from the 23 S RNA and proteins have been studied by electron microscopy. Removal of the 5 S RNA-protein complex is shown to affect neither the overall morphology of the larger ribosomal subunit nor the mode of its association with the small subunit. 相似文献
15.
Caprini M Fava M Valente P Fernandez-Ballester G Rapisarda C Ferroni S Ferrer-Montiel A 《The Journal of biological chemistry》2005,280(18):18253-18264
Voltage-gated ion channels are modular proteins designed by the structural linkage of a voltage sensor and a pore domain. The functional coupling of these two protein modules is a subject of intense research. A major focus has been directed to decipher the role of the S4-S5 linker and the C-end of the inner pore helix in channel gating. However, the contribution of the cytosolic N terminus of S5 remains elusive. To address this issue, we used a chimeric subunit that linked the voltage sensor of the Shaker channel to the prokaryotic KcsA pore domain (denoted as Shaker-KcsA). This chimera preserved the Shaker sequences at both the N terminus of S5 and the C-end of S6. Chimeric Shaker-KcsA subunits did not form functional homomeric channels but were synthesized, folded, and trafficked to the cell surface, as evidenced by their co-assembly with Shaker wild type subunits. Sequential substitution of Shaker amino acids at the C-end of S6 and the N terminus of S5 by the corresponding KcsA created voltage-sensitive channels with voltage-dependent properties that asymptotically approached those of the wild type Shaker channel. Noteworthy, substitution of the region encompassing Phe(401)-Phe(404) at the N-end of Shaker S5 by KcsA residues resulted in a significant gain in voltage sensitivity of the chimeras. Furthermore, analysis of channel function at high [K(+)](o) revealed that the Phe(401)-Phe(404) region is an important molecular determinant for competent coupling of voltage sensing and pore opening. Taken together, these findings indicate that complete replacement of Shaker S5 and S6 by KcsA M1 and M2 is required for voltage-dependent gating of the prokaryotic channel. In addition, our results imply that the region encompassing Phe(401)-Phe(404) in Shaker is involved in protein-protein interactions with the voltage sensor, and signal to the Phe(401) in the S5 segment as a key molecular determinant to pair the voltage sensor and the pore domain. 相似文献
16.
We have investigated the chromatin structure of 5S rDNA, a heterochromatic pericentromeric tandemly repeated family, at 2, 3, 4 and 5 days post-germination. Our results revealed a large-scale reorganization of 5S rDNA chromatin that occurs during the first days of development. Unexpectedly, there is a decondensation followed by a 're'condensation of 5S rDNA chromatin, to obtain almost mature nuclei 5 d post-germination. The reorganization of 5S rDNA chromatin is accompanied by a rapid and active demethylation of 5S rDNA mediated by the ROS1 (repressor of silencing 1) demethylase, whereas the plant-specific RNA polymerase IV (Pol IV) is essential to the 5S chromatin 're'condensation. In conclusion, Pol IV and ROS1 collaborate to unlock the 5S rDNA chromatin inherited from the seed, and establish adult features. 相似文献
17.
18.
19.
20.
The S RNA segment of lymphocytic choriomeningitis virus codes for the nucleoprotein and glycoproteins 1 and 2. 总被引:3,自引:4,他引:3
下载免费PDF全文

Y Riviere R Ahmed P J Southern M J Buchmeier F J Dutko M B Oldstone 《Journal of virology》1985,53(3):966-968
The lymphocytic choriomeningitis virus (LCMV) genome consists of a large RNA segment and a small RNA segment. The three major structural proteins of this virus are an internal nucleoprotein and two surface glycoproteins. Intertypic reassortants between the Armstrong and WE strains of LCMV were made to map proteins encoded by the LCMV genome segments. Using monoclonal antibodies specific for the nucleoprotein and the glycoproteins of WE and Armstrong, we showed that the small RNA segment of LCMV codes for the three major structural polypeptides. 相似文献