首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-resolution structures of macromolecular assemblies are pivotal for our understanding of their biological functions in fundamental cellular processes. In the field of X-ray crystallography, recent methodological and instrumental advances have led to the structure determinations of macromolecular assemblies of increased size and complexity, such as those of ribosomal complexes, RNA polymerases, and large multifunctional enzymes. These advances include the use of robotic screening techniques that maximize the chances of obtaining well-diffracting crystals of large complexes through the fine sampling of crystallization space. Sophisticated crystal optimization and cryoprotection techniques and the use of highly brilliant X-ray beams from third-generation synchrotron light sources now allow data collection from weakly diffracting crystals with large asymmetric units. Combined approaches are used to derive phase information, including phases calculated from electron microscopy (EM) models, heavy atom clusters, and density modification protocols. New crystallographic software tools prove valuable for structure determination and model refinement of large macromolecular complexes.  相似文献   

2.
Conditions have been established for the crystallization of tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus at room temperature. The crystals are extremely well-ordered, exhibiting diffraction spots out to at least 2.7 Å, and can be grown to a convenient size for X-ray crystallographic analysis. The crystals are trigonal with a space group P3121, the unit cell having dimensions of a = 64.4 A? and c = 238 A?; the crystallographic asymmetric unit is probably one subunit of the dimeric (2 × 45,000, mol. wt) enzyme. The enzyme crystals are extremely stable and exhibit good resistance to radiation damage. This amino-acyl-tRNA synthetase appears to be amenable to complete structure determination by X-ray crystallography.  相似文献   

3.
Abstract

The human serotonin transporter (hSERT) played a significant role in neurological process whose structural basis had been analysed for many years. Recently, the first homology model was constructed for hSERT based on the crystal structure of drosophila melanogaster dopamine transporter was published, and the inhibitory mechanism underlying the binding mode between hSERT and approved antidepressants was substantially investigated by molecular dynamics (MD) simulation. Right after this publication, the X-ray crystallographic structures of hSERT were reported, which provided a good opportunity to reassess the performance of previous simulation. In this study, the analyses of side-chain contact map, stereochemical quality and ligand-binding pocket were firstly conducted, which revealed that the constructed homology model of hSERT could successfully reproduce the reported crystal structure. Secondly, the approved antidepressant escitalopram was docked into the X-ray structure, and its binding pose was consistent with the reported docking pose in the homology model. Finally, MD simulation were performed based on the crystal structure of hSERT, and structural features revealed as critical for escitalopram-hSERT interaction by previous simulation were successfully recaptured. Thus, the newly reported X-ray crystal structure of hSERT was precisely predicted by computational model, which demonstrated its reliability in understanding the pharmacology of other human monoamine transporters whose 3-D structure remained unknown.  相似文献   

4.
The majority of 3D structures of macromolecules are currently determined by macromolecular crystallography, which employs the diffraction of X-rays on single crystals. However, during diffraction experiments, the X-rays can damage the protein crystals by ionization processes, especially when powerful X-ray sources at synchrotron facilities are used. This process of radiation damage generates photo-electrons that can get trapped in protein moieties. The 3D structure derived from such experiments can differ remarkably from the structure of the native molecule. Recently, the crystal structures of different oxidation states of horseradish peroxidase and nickel-containing superoxide dismutase were determined using crystallographic redox titration performed during the exposure of the crystals to the incident X-ray beam. Previous crystallographic analyses have not shown the distinct structures of the active sites associated with the redox state of the structural features of these enzymes. These new studies show that, for protein moieties that are susceptible to radiation damage and prone to reduction by photo-electrons, care is required in both the design of the diffraction experiment and the analysis and interpretation.  相似文献   

5.
Yan W  Shao Z  Li F  Niu L  Shi Y  Teng M  Li X 《FEBS letters》2011,585(24):3874-3879
Human Pax2 transactivation domain-interacting protein (hPTIP), containing six BRCT domains, is an essential protein required for the IR induced DDR process with an unclear role. Here we report that the tandem BRCT5–BRCT6 domain of hPTIP recognizes the γH2AX tail, and this interaction depends on the phosphorylation of H2AX Ser139 and binding with the carboxyl ending peptide to the aminoacyl ending peptide. The 2.15 Å crystal structure of hPTIP BRCT5/6–γH2AX complex and mutation analysis provide molecular evidence for direct interactions between PTIP and γH2AX. This interaction proffers a new clue to identify the role of PTIP in DDR pathways.

Structured summary of protein interactions

PTIP and gamma H2AXbind by fluorescence polarization spectroscopy (View Interaction: 1, 2, 3, 4, 5, 6).PTIP and gamma H2AXbind by X-ray crystallography (View interaction).  相似文献   

6.
To increase the efficiency of diffraction data collection for protein crystallographic studies, an automated system designed to store frozen protein crystals, mount them sequentially, align them to the X-ray beam, collect complete data sets, and return the crystals to storage has been developed. Advances in X-ray data collection technology including more brilliant X-ray sources, improved focusing optics, and faster-readout detectors have reduced diffraction data acquisition times from days to hours at a typical protein crystallography laboratory [1,2]. In addition, the number of high-brilliance synchrotron X-ray beam lines dedicated to macromolecular crystallography has increased significantly, and data collection times at these facilities can be routinely less than an hour per crystal. Because the number of protein crystals that may be collected in a 24 hr period has substantially increased, unattended X-ray data acquisition, including automated crystal mounting and alignment, is a desirable goal for protein crystallography. The ability to complete X-ray data collection more efficiently should impact a number of fields, including the emerging structural genomics field [3], structure-directed drug design, and the newly developed screening by X-ray crystallography [4], as well as small molecule applications.  相似文献   

7.
Thin crystals of beef liver catalase have been examined by electron microscopy following various preservation procedures. In the first part of this investigation, micrographs of three principal projections were obtained from thin sections of micro-crystals embedded in the presence of tannic acid. Computer reconstructions confirmed the space group assignment of P212121 and permitted the packing arrangement of the catalase tetramers to be deduced to a resolution of about 20 Å. These results corroborate the packing model for this crystal form proposed by Unwin (1975) on the basis of molecular modeling of one projection. In the second part of this investigation, the projected structures of the thin crystals in various preserving media were compared. The negative contrasting of crystals embedded in the presence of tannic acid was confirmed by direct comparison with nonembedded, negatively stained thin platelet crystals. In addition, good agreement at 20 Å resolution was observed between the structure of negatively stained crystals and the structure of crystal platelets preserved in glucose and examined by lowdose methods, while moderate agreement was established with the published data of Taylor (1978) for crystals embedded in thin ice films. Tannic acid alone was also found to serve as a suitable medium for preserving catalase crystals to a resolution of 3.7 Å as judged by electron diffraction. Overall, we demonstrate that projections obtained from thin sections of catalase crystals embedded in the presence of tannic acid can provide a reliable, negatively contrasted representation of the protein structure to 20 Å resolution. Examination of sectioned crystals could thus provide a useful adjunct to X-ray crystallographic studies of protein crystals and three-dimensional reconstruction of crystal thin sections should ultimately be possible.  相似文献   

8.
High resolution protein crystallography using synchrotron radiation is one of the most powerful tools in modern biology. Improvements in resolution have arisen from the use of X-ray beamlines with higher brightness and flux and the development of advanced detectors. However, it is increasingly recognised that the benefits brought by these advances have an associated cost, namely deleterious effects of X-ray radiation on the sample (radiation damage). In particular, X-ray induced reduction and damage to redox centres has been shown to occur much more rapidly than other radiation damage effects, such as loss of resolution or damage to disulphide bridges. Selection of an appropriate combination of in-situ single crystal spectroscopies during crystallographic experiments, such as UV-visible absorption and X-ray absorption spectroscopy (XAFS), allows for effective monitoring of redox states in protein crystals in parallel with structure determination. Such approaches are also essential in cases where catalytic intermediate species are generated by exposure to the X-ray beam. In this article, we provide a number of examples in which multiple single crystal spectroscopies have been key to understanding the redox status of Fe and Cu centres in crystal structures. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.  相似文献   

9.
The serendipitous discovery of the spontaneous growth of protein crystals inside cells has opened the field of crystallography to chemically unmodified samples directly available from their natural environment. On the one hand, through in vivo crystallography, protocols for protein crystal preparation can be highly simplified, although the technique suffers from difficulties in sampling, particularly in the extraction of the crystals from the cells partly due to their small sizes. On the other hand, the extremely intense X-ray pulses emerging from X-ray free-electron laser (XFEL) sources, along with the appearance of serial femtosecond crystallography (SFX) is a milestone for radiation damage-free protein structural studies but requires micrometre-size crystals. The combination of SFX with in vivo crystallography has the potential to boost the applicability of these techniques, eventually bringing the field to the point where in vitro sample manipulations will no longer be required, and direct imaging of the crystals from within the cells will be achievable. To fully appreciate the diverse aspects of sample characterization, handling and analysis, SFX experiments at the Japanese SPring-8 angstrom compact free-electron laser were scheduled on various types of in vivo grown crystals. The first experiments have demonstrated the feasibility of the approach and suggest that future in vivo crystallography applications at XFELs will be another alternative to nano-crystallography.  相似文献   

10.
Protein crystals, routinely prepared for the elucidation of protein 3D structures by X-ray crystallography, present an ordered and highly accurate 3D array of protein molecules. Inherent to the 3D arrangement of the protein molecules in the crystal is a complementary 3D array of voids made of interconnected cavities and exhibiting highly ordered porosity. The permeability of the porosity of chemically crosslinked enzyme protein crystals to low molecular weight solutes, was used for enzyme mediated organic synthesis and size exclusion chromatography. This permeability might be extended to explore new potential applications for protein crystals, for example, their use as bio-templates for the fabrication of novel, nano-structured composite materials. The quality of composites obtained from "filling" of the ordered voids in protein crystals and their potential applications will be strongly dependent upon an accurate preservation of the order in the original protein crystal 3D array during the "filling" process. Here we propose and demonstrate the feasibility of monitoring the changes in 3D order of the protein array by a step-by-step molecular level monitoring of a model system for hydrogel bio-templating by glutaraldehyde crosslinked lysozyme crystals. This monitoring is based on step-by-step comparative analysis of data obtained from (i) X-ray crystallography: resolution, unit cell dimensions and B-factor values and (ii) fluorescence decay kinetics of ultra-fast laser activated dye, impregnated within these crystals. Our results demonstrated feasibility of the proposed monitoring approach and confirmed that the stabilized protein crystal template retained its 3D structure throughout the process.  相似文献   

11.
Preparations of coxsackievirus B1 (CVB1) derived from an infectious cDNA clone have been crystallized in multiple crystal forms. Using high intensity synchrotron radiation, an orthorhombic form of the crystals was shown to diffract X-rays to at least 2.9 A resolution. The unit cell has a primitive lattice with dimensions a = 323 A, b = 450 A, and c = 522 A. A crystallographic asymmetric unit of these CVB1 crystals probably contains an entire virus particle, implying the presence of 60-fold non-crystallographic redundancy. This CVB1 crystal form appears to be suitable for high-resolution structure determination by X-ray crystallography.  相似文献   

12.
Abstract

The crystal and molecular structure of sodium deoxyinosine monophosphate (5′-dIMP) has been determined by x-ray crystallographic methods. The crystals belong to orthorhombic space group P212121, with a = 21.079(5) Å, b = 9.206(3) Å and c = 12.770(6) Å. This deoxynucleotide shows common nucleotide features namely anti conformation about the glycosyl bond, C2′ endo pucker for the deoxyribose sugar and gauche-gauche orientation for the phosphate group. The sodium ion is directly coordinated to the O3′ atom, a feature observed in many crystal structures of sodium salts of nucleotides.  相似文献   

13.
The molecular structure of the 1:1 complex of cycloheptaamylose with 2,5-diiodobenzoic acid has been determined by X-ray crystallography. The iodine atoms of the guest molecular are disordered and were not used in the structure determination. The cycloheptaamylose molecules form channels in the crystal by means of head to head and tail to tail association using the two-fold crystallographic axis.  相似文献   

14.
Carey PR  Dong J 《Biochemistry》2004,43(28):8885-8893
Raman crystallography permits the monitoring of chemical events in single-protein crystals in real time. Using a Raman microscope, it is possible to obtain protein Raman spectroscopic data of unprecedented quality and stability. The latter features allow us to obtain the Raman spectrum for small molecules soaking into crystals under normal (nonresonance) Raman conditions. Thus, via an approach utilizing Raman difference spectroscopy, we can quantitate the amount of ligand in the crystal, determine the chemistry of inhibitor-protein interactions, and follow chemical reactions in the active site on the time scale of minutes. While providing unique chemical insights, these data also provide an invaluable guide for determining the conditions for flash-freezing crystals for X-ray crystallographic analysis. In addition, the Raman difference spectra often contain contributions from protein modes due to protein conformational changes occurring upon ligand binding. These features allow us to probe events ranging from small cooperative conformational changes to massive and unexpected secondary structure changes in the crystal. An experimental advantage of Raman crystallography is that the data can be collected from crystals in situ, in sitting or hanging drops, under the conditions used to grow the crystals.  相似文献   

15.
X-ray Diffraction Study of a New Crystal Form of Yeast Phenylalanine tRNA   总被引:5,自引:0,他引:5  
IN our continuing studies on the crystallography of tRNA1 we have obtained a new crystal form of phenylalanine tRNA from baker's yeast. The crystals show particularly good stability to X-ray irradiation, lasting generally for about 100 h in the X-ray beam. Most importantly they produce reflexions which extend out to a resolution of about 3.0 Å. The crystals belong to the monoclinic system, space group P2i with two molecules of tRNA per unit cell (Table 1). Thus, there is only one molecule per asymmetric unit of structure. The unit cell dimensions (a=56.0, b=33.4, c=63.0 and β=90.9°) are the smallest yet reported for tRNA and place stringent constraints on the possible dimensions of the tRNA molecule.  相似文献   

16.
We present the structure of the duplex formed by a fragment of auto-complementary DNA with the sequence d(CGTTAATTAACG). The structure was determined by X-ray crystallography. Up to date it is the first structure presenting the interaction between a DNA oligonucleotide and manganese ions. The presence of Mn2+ creates bonds among the N7 atom of guanines and phosphates. These bonds stabilize and determine the crystallographic network in a P32 space group, unusual in oligonucleotide crystals. The crystal structure observed is compared with those found in the presence of Mg2+, Ca2+ and Ni2+, which show different kinds of interactions. The double helices show end-to-end interactions, in a manner that the terminal guanines interact with the minor groove of the neighboring duplex, while the terminal cytosines are disordered. We have chosen this sequence since it contains a TTAA repeat. Such repeats are very rare in all genomes. We suggest that this sequence may be very susceptible to the formation of closely spaced thymine dimers.  相似文献   

17.
Crystals of an L-asparaginase from Vibrio succinogenes were obtained with the hanging drop method from ammonium sulphate-containing solutions. The crystals belong to the orthorhombic space group P22(1)2(1) with unit cell dimensions of a = 71.3 A, b = 85.8 A, c = 114.0 A, and contain two tetrameric enzyme molecules per unit cell. There are two subunits in the asymmetric unit; a molecular dyad is coincident with the crystallographic dyad. The crystal lattice is similar to that reported for an Escherichia coli asparaginase. Rotation function calculations have revealed that the V. succinogenes enzyme has 222 point group symmetry in the crystal. The second and third molecular dyads differ, however, from the corresponding E. coli asparaginase dyads by approximately 40 degrees. The crystals diffract to at least 2.2 A resolution and are suitable for X-ray crystallographic structure determination.  相似文献   

18.
The quaternary structure of the homodimeric small multidrug resistance protein EmrE has been studied intensely over the past decade. Structural models derived from both two- and three-dimensional crystals show EmrE as an anti-parallel homodimer. However, the resolution of the structures is rather low and their relevance for the in vivo situation has been questioned. Here, we have challenged the available structural models by a comprehensive in vivo Trp scanning of all four transmembrane helices in EmrE. The results are in close agreement with the degree of lipid exposure of individual residues predicted from coarse-grained molecular dynamics simulations of the anti-parallel dimeric structure obtained by X-ray crystallography, strongly suggesting that the X-ray structure provides a good representation of the active in vivo form of EmrE  相似文献   

19.
Polysaccharides are the most abundant class of biopolymers, holding an important place in biological systems and sustainable material development. Their spatial organization and intra- and intermolecular interactions are thus of great interest. However, conventional single crystal crystallography is not applicable since polysaccharides crystallize only into tiny crystals. Several crystallographic methods have been developed to extract atomic-resolution structural information from polysaccharide crystals. Small-probe single crystal diffractometry, high-resolution fiber diffraction and powder diffraction combined with molecular modeling brought new insights from various types of polysaccharide crystals, and led to many high-resolution crystal structures over the past two decades. Current challenges lie in the analysis of disorder and defects by further integrating molecular modeling methods for low-resolution diffraction data.  相似文献   

20.
BackgroundIn protein crystals, flexible loops are frequently deformed by crystal contacts, whereas in solution, the large motions result in the poor convergence of such flexible loops in NMR structure determinations. We need an experimental technique to characterize the structural and dynamic properties of intrinsically flexible loops of protein molecules.MethodsWe designed an intended crystal contact-free space (CCFS) in protein crystals, and arranged the flexible loop of interest in the CCFS. The yeast Tim 21 protein was chosen as the model protein, because one of the loops (loop 2) is distorted by crystal contacts in the conventional crystal.ResultsYeast Tim21 was fused to the MBP protein by a rigid α-helical linker. The space created between the two proteins was used as the CCFS. The linker length provides adjustable freedom to arrange loop 2 in the CCFS. We re-determined the NMR structure of yeast Tim21, and conducted MD simulations for comparison. Multidimensional scaling was used to visualize the conformational similarity of loop 2. We found that the crystal contact-free conformation of loop 2 is located close to the center of the ensembles of the loop 2 conformations in the NMR and MD structures.ConclusionsLoop 2 of yeast Tim21 in the CCFS adopts a representative, dominant conformation in solution.General significanceNo single powerful technique is available for the characterization of flexible structures in protein molecules. NMR analyses and MD simulations provide useful, but incomplete information. CCFS crystallography offers a third route to this goal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号