首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, the Varroa destructor mite is the most serious parasite of honey bees (Apis mellifera) and has become a nearly cosmopolitan species. The mite not only causes damage by feeding on the haemolymph of honey bees, but it also transmits viruses, which have been implicated in colony collapse disorder. The major research goal has been to breed mite-tolerant honey bee lines in order to reduce the amount of pesticide used, because pesticides can promote the evolution of resistance in mites. In this review, we describe different behavioural traits and genes that may be part of the defence against the Varroa mite. Specifically, we review grooming behaviour, Varroa-sensitive hygiene and the suppression of mite reproduction. A large number of candidate genes have been identified by Quantitative Trait Loci studies, and through gene expression studies their function and effect have been elucidated. Results from the studies discussed can be used in apiary practice.  相似文献   

2.
The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera) and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA) with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control.  相似文献   

3.
Social insect colonies possess a range of defences which protect them against highly virulent parasites and colony collapse. The host–parasite interaction between honey bees (Apis mellifera) and the mite Varroa destructor is unusual, as honey bee colonies are relatively poorly defended against this parasite. The interaction has existed since the mid‐20th Century, when Varroa switched host to parasitize A. mellifera. The combination of a virulent parasite and relatively naïve host means that, without acaricides, honey bee colonies typically die within 3 years of Varroa infestation. A consequence of acaricide use has been a reduced selective pressure for the evolution of Varroa resistance in honey bee colonies. However, in the past 20 years, several natural‐selection‐based breeding programmes have resulted in the evolution of Varroa‐resistant populations. In these populations, the inhibition of Varroa's reproduction is a common trait. Using a high‐density genome‐wide association analysis in a Varroa‐resistant honey bee population, we identify an ecdysone‐induced gene significantly linked to resistance. Ecdysone both initiates metamorphosis in insects and reproduction in Varroa. Previously, using a less dense genetic map and a quantitative trait loci analysis, we have identified Ecdysone‐related genes at resistance loci in an independently evolved resistant population. Varroa cannot biosynthesize ecdysone but can acquire it from its diet. Using qPCR, we are able to link the expression of ecdysone‐linked resistance genes to Varroa's meals and reproduction. If Varroa co‐opts pupal compounds to initiate and time its own reproduction, mutations in the host's ecdysone pathway may represent a key selection tool for honey bee resistance and breeding.  相似文献   

4.
Varroa destructor mite is currently the most serious threat to the world bee industry. Differences in mite tolerance are reported between two honey bee species Apis mellifera and Apis cerana. Differential gene expression of two honey bee species induced by V. destructor infection was investigated by constructing two suppression subtractive hybridization (SSH) libraries, as first steps toward elucidating molecular mechanisms of Varroa tolerance. From the SSH libraries, we obtained 289 high quality sequences which clustered into 132 unique sequences grouped in 26 contigs and 106 singlets where 49 consisted in A. cerana subtracted library and 83 in A. mellifera. Using BLAST, we found that 85% sequences had counterpart known genes whereas 15% were undescribed. A Gene Ontology analysis classified 51 unique sequences into different functional categories. Eight of these differentially expressed genes, representative of different regulation patterns, were confirmed by qRT-PCR. Upon the mite induction, the differentially expressed genes from both bee species were different, except hex 110 gene, which was up-regulated in A. cerana but down-regulated in A. mellifera, and Npy-r gene, which was down-regulated in both species. In general, most of the differential expression genes were involved in metabolic processes and nerve signaling. The results provide information on the molecular response of these two bee species to Varroa infection.  相似文献   

5.
Mites in the genus Tropilaelaps (Acari: Laelapidae) are ectoparasites of the brood of honey bees (Apis spp.). Different Tropilaelaps subspecies were originally described from Apis dorsata, but a host switch occurred to the Western honey bee, Apis mellifera, for which infestations can rapidly lead to colony death. Tropilaelaps is hence considered more dangerous to A. mellifera than the parasitic mite Varroa destructor. Honey bees are also infected by many different viruses, some of them associated with and vectored by V. destructor. In recent years, deformed wing virus (DWV) has become the most prevalent virus infection in honey bees associated with V. destructor. DWV is distributed world-wide, and found wherever the Varroa mite is found, although low levels of the virus can also be found in Varroa free colonies. The Varroa mite transmits viral particles when feeding on the haemolymph of pupae or adult bees. Both the Tropilaelaps mite and the Varroa mite feed on honey bee brood, but no observations of DWV in Tropilaelaps have so far been reported. In this study, quantitative real-time RT-PCR was used to show the presence of DWV in infested brood and Tropilaelaps mercedesae mites collected in China, and to demonstrate a close quantitative association between mite-infested pupae of A. mellifera and DWV infections. Phylogenetic analysis of the DWV sequences recovered from matching pupae and mites revealed considerable DWV sequence heterogeneity and polymorphism. These polymorphisms appeared to be associated with the individual brood cell, rather than with a particular host.  相似文献   

6.
The ectoparasitic mite Varroa destructor is an invasive species of Western honey bees (Apis mellifera) and the largest pathogenic threat to their health world-wide. Its successful invasion and expansion is related to its ability to exploit the worker brood for reproduction, which results in an exponential population growth rate in the new host. With invasion of the mite, wild honeybee populations have been nearly eradicated from Europe and North America, and the survival of managed honeybee populations relies on mite population control treatments. However, there are a few documented honeybee populations surviving extended periods without control treatments due to adapted host traits that directly impact Varroa mite fitness. The aim of this study was to investigate if Varroa mite reproductive success was affected by traits of adult bee behaviours or by traits of the worker brood, in three mite-resistant honey bee populations from Sweden, France and Norway. The mite’s reproductive success was measured and compared in broods that were either exposed to, or excluded from, adult bee access. Mite-resistant bee populations were also compared with a local mite-susceptible population, as a control group. Our results show that mite reproductive success rates and mite fecundity in the three mite-resistant populations were significantly different from the control population, with the French and Swedish populations having significantly lower reproductive rates than the Norwegian population. When comparing mite reproduction in exposed or excluded brood treatments, no differences were observed, regardless of population. This result clearly demonstrates that Varroa mite reproductive success can be suppressed by traits of the brood, independent of adult worker bees.  相似文献   

7.
In East Africa, honey bees (Apis mellifera) provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia) and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations.  相似文献   

8.
Jay D. Evans 《Molecular ecology》2019,28(12):2955-2957
Rivaling pesticides and a dearth of flowers, the parasitic mite Varroa destructor presents a tremendous threat to western honey bees, Apis mellifera. A longstanding, but minor, pest for the Asian honey bee Apis cerana, these obligate bee parasites feast on developing and adult A. mellifera across several continents. Varroa reproduction is limited to a short window when developing bee pupae are concealed in wax cells. Mated females target developing bees just before pupation and then have about one day to initiate reproduction, eventually laying one male and up to several female offspring. Female mites often fail to reproduce at all, instead waiting in cells until their bee host finishes development and then hitching dangerous rides on a succession of adult bees for up to several weeks, before scouting for a new host pupa. In this issue of Molecular Ecology, Conlon et al. (2019) have explored mite reproductive success via a clever and thought‐provoking association study. In so doing, they have identified a protein whose actions could be integral to the dance between bees and their mite parasites.  相似文献   

9.
The parasitic mite Varroa destructor is amongst the most serious problems of honey bees, Apis mellifera (Hymenoptera: Apidae) around the world including Pakistan. The present study estimates the mite density through powdered sugar roll method and evaluates the effectiveness of five miticides (fluvalinate, flumethrin, amitraz, formic acid, and oxalic acid) on A. mellifera colonies in German modified beehives. The results indicated that by treating the bees with one strip and two strips of fluvalinate per colony; the mite population remained below the economic threshold level (ETL) for 14 days and 25 days, respectively. Treatment of flumthrin @1 strip and @ 2 strips per colony resulted in mite population suppressed for 14 days and 39 days, respectively below ETL. Application of Amitraz @ 2 mL per 1.5 L water after every three days interval on sealed brood effectively controlled mites below ETL for 21 days. Formic acid @10 mL per colony applied through plastic applicator proved effective (below 3 mites per bee sample) for 24 days and oxalic acid applied through shop towel method resulted in mite population control for fifteen days. Use of powdered sugar roll method for easy sampling of Varroa mites and application of acaricides on precise economic threshold level during different seasons of the year for integrated management of Varroa mite is hereby advocated by current studies.  相似文献   

10.
Acute bee paralysis virus (ABPV), Kashmir bee virus (KBV) and Israeli acute paralysis virus (IAPV) are part of a complex of closely related viruses from the Family Dicistroviridae. These viruses have a widespread prevalence in honey bee (Apis mellifera) colonies and a predominantly sub-clinical etiology that contrasts sharply with the extremely virulent pathology encountered at elevated titres, either artificially induced or encountered naturally. These viruses are frequently implicated in honey bee colony losses, especially when the colonies are infested with the parasitic mite Varroa destructor. Here we review the historical and recent literature of this virus complex, covering history and origins; the geographic, host and tissue distribution; pathology and transmission; genetics and variation; diagnostics, and discuss these within the context of the molecular and biological similarities and differences between the viruses. We also briefly discuss three recent developments relating specifically to IAPV, concerning its association with Colony Collapse Disorder, treatment of IAPV infection with siRNA and possible honey bee resistance to IAPV.  相似文献   

11.
The effects of the tracheal mite Acarapis woodi on the health of honey bees have been neglected since the prevalence of Varroa mites to Apis mellifera colonies. However, tracheal mite infestation of honey bee colonies still occurs worldwide and could impose negative impact on apiculture. The detection of A. woodi requires the dissection of honey bees followed by microscopic observation of the tracheal sacs. We thus developed PCR methods to detect A. woodi. These methods facilitate rapid and sensitive detection of A. woodi in many honey bee samples for epidemiologic surveys.  相似文献   

12.
The ectoparasitic mite Varroa jacobsoni reproduces in the capped brood of the honey bees Apis cerana and Apis mellifera. Observations on the reproductive behavior of the mite have shown a well-structured spatial allocation of its activity using the bee or cell wall for different behaviors. The resulting advantages for the parasite of this subdivision of the concealed brood environment suggests an important role for chemostimuli in these substrates. Extracts of the European honey bee cocoons induce a strong arrestment response in the mite, as indicated by prolonged periods of walking on the extracts applied on a semipermeable membrane and by systematically returning to the stimulus after encountering the treatment borders. Two thin-layer chromatography fractions of the cocoon extract eliciting arrestment were found to contain saturated C17 to C22 primary aliphatic alcohols and C19 to C22 aldehydes. We analyzed extracts of the cocoon and different larvae, pupae, and adults of both worker and drone A. mellifera to determine the relative amounts of these chemostimuli in the different substrates employed by Varroa. Both aldehydes and alcohols were more abundant in the cocoon than in the cuticle of adult or developing bees. Mixtures of the aliphatic alcohols and aldehydes at the proportions found in the cocoons acted synergistically on the arrestment response, but this activity disappeared when mixed in equal amounts. When these oxygenated chemostimuli were mixed with C19 to C25 alkanes at the proportions found in the cocoon extract, we observed a significantly lower threshold for the chemostimulant mixture. These results indicate how Varroa may use mixtures of rarer products to differentiate between substrates and host stages during its developmental cycle within honey bee brood cells. Arch. Insect Biochem. Physiol. 37:129–145, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
A behavioral and physiological resistance mechanism of the Asian honey bee (Apis cerana) to an ectoparasitic mite, Varroa jacobsoni, which causes severe damage to the European honey bee (Apis mellifera) in the beekeeping industry worldwide, is reported here for the first time. Parasitism by the mite induced Asian worker bees to perform a series of cleaning behaviors that effectively removed the mites from the bodies of the adult host bees. The mites were subsequently killed and removed from the bee hives in a few seconds to a few minutes. The grooming behavior consists of self-cleaning, grooming dance, nestmate cleaning, and group cleaning. Worker bees can also rapidly and effectively remove the mites from the brood. The European bee showed cleaning behavior at low frequency and generally failed to remove the mites from both the adult bees and the brood.  相似文献   

14.
The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation.  相似文献   

15.
Over the past fifty years, annual honeybee (Apis mellifera) colony losses have been steadily increasing worldwide. These losses have occurred in parallel with the global spread of the honeybee parasite Varroa destructor. Indeed, Varroa mite infestations are considered to be a key explanatory factor for the widespread increase in annual honeybee colony mortality. The host-parasite relationship between honeybees and Varroa is complicated by the mite''s close association with a range of honeybee viral pathogens. The 10-year history of the expanding front of Varroa infestation in New Zealand offered a rare opportunity to assess the dynamic quantitative and qualitative changes in honeybee viral landscapes in response to the arrival, spread and level of Varroa infestation. We studied the impact of de novo infestation of bee colonies by Varroa on the prevalence and titres of seven well-characterised honeybee viruses in both bees and mites, using a large-scale molecular ecology approach. We also examined the effect of the number of years since Varroa arrival on honeybee and mite viral titres. The dynamic shifts in the viral titres of black queen cell virus and Kashmir bee virus mirrored the patterns of change in Varroa infestation rates along the Varroa expansion front. The deformed wing virus (DWV) titres in bees continued to increase with Varroa infestation history, despite dropping infestation rates, which could be linked to increasing DWV titres in the mites. This suggests that the DWV titres in mites, perhaps boosted by virus replication, may be a major factor in maintaining the DWV epidemic after initial establishment. Both positive and negative associations were identified for several pairs of viruses, in response to the arrival of Varroa. These findings provide important new insights into the role of the parasitic mite Varroa destructor in influencing the viral landscape that affects honeybee colonies.  相似文献   

16.
The frequency of damaged Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae) found on the bottom board of hives of the honey bee, Apis mellifera L. (Hymenoptera: Apidae) has been used as an indicator of the degree of tolerance or resistance of honey bee colonies against mites. However, it is not clear that this measure is adequate. These injuries should be separated from regular dorsal dimples that have a developmental origin. To investigate damage to Varroa mites and regular dorsal dimples, 32 honey bee (A. mellifera) colonies were selected from four Iranian provinces: Isfahan, Markazi, Qazvin, and Tehran. These colonies were part of the National Honey bee Breeding Program that resulted in province-specific races. In April, Varroa mites were collected from heavily infested colonies and used to infest the 32 experimental colonies. In August, 20 of these colonies were selected (five colonies from each province). Adult bees from these colonies were placed in cages and after introducing mites, damaged mites were collected from each cage every day. The average percentage of injured mites ranged from 0.6 to 3.0% in four provinces. The results did not show any statistical differences between the colonies within provinces for injuries to mites, but there were some differences among province-specific lines. Two kinds of injuries to the mites were observed: injuries to legs and pedipalps, and injuries to other parts of the body. There were also some regular dorsal dimples on dorsal idiosoma of the mites that were placed in categories separate from mites damaged by bees. This type of classification helps identifying damage to mites and comparing them with developmental origin symptoms, and may provide criteria for selecting bees tolerant or resistant to this mite.  相似文献   

17.
The parasitic mite Varroa destructor devastates honey bee (Apis mellifera) colonies around the world. Entering a brood cell shortly before capping, the Varroa mother feeds on the honey bee larvae. The hormones 20‐hydroxyecdysone (20E) and juvenile hormone (JH), acquired from the host, have been considered to play a key role in initiating Varroa''s reproductive cycle. This study focuses on differential expression of the genes involved in the biosynthesis of JH and ecdysone at six time points during the first 30 hr after cell capping in both drone and worker larvae of A. mellifera. This time frame, covering the conclusion of the honey bee brood cell invasion and the start of Varroa''s ovogenesis, is critical to the successful initiation of a reproductive cycle. Our findings support a later activation of the ecdysteroid cascade in honey bee drones compared to worker larvae, which could account for the increased egg production of Varroa in A. mellifera drone cells. The JH pathway was generally downregulated confirming its activity is antagonistic to the ecdysteroid pathway during the larva development. Nevertheless, the genes involved in JH synthesis revealed an increased expression in drones. The upregulation of jhamt gene involved in methyl farnesoate (MF) synthesis came into attention since the MF is not only a precursor of JH but it is also an insect pheromone in its own right as well as JH‐like hormone in Acari. This could indicate a possible kairomone effect of MF for attracting the mites into the drone brood cells, along with its potential involvement in ovogenesis after the cell capping, stimulating Varroa''s initiation of egg laying.  相似文献   

18.
Apis mellifera syriaca exhibits a high degree of tolerance to pests and pathogens including varroa mites. This native honey bee subspecies of Jordan expresses behavioral adaptations to high temperature and dry seasons typical of the region. However, persistent honey bee imports of commercial breeder lines are endangering local honey bee population. This study reports the use of next‐generation sequencing (NGS) technology to study the A. m. syriaca genome and to identify genetic factors possibly contributing toward mite resistance and other favorable traits. We obtained a total of 46.2 million raw reads by applying the NGS to sequence A. m. syriaca and used extensive bioinformatics approach to identify several candidate genes for Varroa mite resistance, behavioral and immune responses characteristic for these bees. As a part of characterizing the functional regulation of molecular genetic pathway, we have mapped the pathway genes potentially involved using information from Drosophila melanogaster and present possible functional changes implicated in responses to Varroa destructor mite infestation toward this. We performed in‐depth functional annotation methods to identify ~600 candidates that are relevant, genes involved in pathways such as microbial recognition and phagocytosis, peptidoglycan recognition protein family, Gram negative binding protein family, phagocytosis receptors, serpins, Toll signaling pathway, Imd pathway, Tnf, JAK‐STAT and MAPK pathway, heamatopioesis and cellular response pathways, antiviral, RNAi pathway, stress factors, etc. were selected. Finally, we have cataloged function‐specific polymorphisms between A. mellifera and A. m. syriaca that could give better understanding of varroa mite resistance mechanisms and assist in breeding. We have identified immune related embryonic development (Cactus, Relish, dorsal, Ank2, baz), Varroa hygiene (NorpA2, Zasp, LanA, gasp, impl3) and Varroa resistance (Pug, pcmt, elk, elf3‐s10, Dscam2, Dhc64C, gro, futsch) functional variations genes between A. mellifera and A. m. syriaca that could be used to develop an effective molecular tool for bee conservation and breeding programs to improve locally adapted strains such as syriaca and utilize their advantageous traits for the benefit of apiculture industry.  相似文献   

19.
t Social insects have evolved colony behavioral, physiological, and organiza. tional adaptations (social immunity) to reduce the risks of parasitization and/or disease transmission. The collection of resin from various plants and its use in the hive as propolis is a clear example of behavioral defense. For Apis mellifera, an increased propolis content in the hive may correspond to variations in the microbial load of the colony and to a downregulation of an individual bee's immune response. However, many aspects of such antimicrobial mechanism still need to be clarified. Assuming that bacterial and fungal infection mechanisms differ from the action of a parasite, we studied the resin collection dynamics in Varroa destructor-infested honeybee colonies. Comparative experiments involving hives with different mite infestation levels were conducted in order to assess the amount of resin collected and propolis quality within the hive, over a 2-year period (2014 and 2015). Our study demonstrates that when A. mellifera colonies are under stress because of Varroa infestation, an increase in the number of resin foragers is recorded, even if a general intensification of the foraging activity is not observed. A reduction in the total polyphenolic content in propolis produced in infested versus uninfested hives was also noticed. Considering that different propolis types show varying levels of inhibition against a variety of honey bee pathogens in vitro, it would be very important to study the effects against Varroa of two diverse types of propolis: from Varroa-free and from Varroa-infested hives.  相似文献   

20.
Nosema ceranae is a microsporidian parasite described from the Asian honey bee, Apis cerana. The parasite is cross-infective with the European honey bee, Apis mellifera. It is not known when or where N. ceranae first infected European bees, but N. ceranae has probably been infecting European bees for at least two decades. N. ceranae appears to be replacing Nosema apis, at least in some populations of European honey bees. This replacement is an enigma because the spores of the new parasite are less durable than those of N. apis. Virulence data at both the individual bee and at the colony level are conflicting possibly because the impact of this parasite differs in different environments. The recent advancements in N. ceranae genetics, with a draft assembly of the N. ceranae genome available, are discussed and the need for increased research on the impacts of this parasite on European honey bees is emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号