首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Regiospecific and conformationally restrained analogs of melphalan and dl-2-NAM-7 have been synthesized and their affinities for the large neutral amino acid transporter (LAT1) of the blood–brain barrier have been determined to assess their potential for accessing the CNS via facilitated transport. Several analogs had Ki values in the range 2.1–8.5 μM with greater affinities than that of either l-phenylalanine (Ki = 11 μM) or melphalan (Ki = 55 μM), but lower than dl-2-NAM-7 (Ki = 0.08 μM). The results indicate that regiospecific positioning of the mustard moiety on the aromatic ring in these analogs is very important for optimal affinity for the large neutral amino acid transporter, and that conformational restriction of the dl-2-NAM-7 molecule in benzonorbornane and indane analogs leads to 25- to 60-fold loss, respectively, in affinity.  相似文献   

2.
Purpose: To use a previously developed CoMFA model to design a series of new structures of high selectivity and efficacy towards the β2-adrenergic receptor. Results: Out of 21 computationally designed structures 6 compounds were synthesized and characterized for β2-AR binding affinities, subtype selectivities and functional activities. Conclusion: the best compound is (R,R)-4-methoxy-1-naphthylfelnoterol with Kiβ2-AR = 0.28 μm, Kiβ1-AR/Kiβ2-AR = 573, EC50cAMP = 3.9 nm, EC50cardio = 16 nm. The CoMFA model appears to be an effective predictor of the cardiomocyte contractility of the studied compounds which are targeted for use in congestive heart failure.  相似文献   

3.
Herein, we report the synthesis and screening of cyano substituted biaryl analogs 5(am) as Peptide deformylase (PDF) enzyme inhibitors. The compounds 5a (IC50 value = 13.16 μM), 5d (IC50 value = 15.66 μM) and 5j (IC50 value = 19.16 μM) had shown good PDF inhibition activity. The compounds 5a (MIC range = 11.00–15.83 μg/mL), 5b (MIC range = 23.75–28.50 μg/mL) and 5j (MIC range = 7.66–16.91 μg/mL) had also shown potent antibacterial activity when compared with ciprofloxacin (MIC range = 25–50 μg/mL). Thus, the active derivatives were not only potent PDF inhibitors but also efficient antibacterial agents. In order to gain more insight on the binding mode of the compounds with PDF, the synthesized compounds 5(am) were docked against PDF enzyme of Escherichia coli and compounds exhibited good binding properties. In silico ADME properties of synthesized compounds were also analyzed and showed potential to develop as good oral drug candidates.  相似文献   

4.
A series of 1-aminotetralin scaffolds was synthesized via metal-catalyzed ring-opening reactions of heterobicyclic alkenes. Small libraries of amides and amines were made using the amino group of each scaffold as a handle. Screening of these libraries against human opioid receptors led to the identification of (S)–(S)-5.2a as a high-affinity selective μ ligand (IC50 μ = 5 nM, κ = 707 nM, δ = 3,795 nM) displaying μ-agonist/antagonist properties due to its partial agonism (EC50 = 2.6 μM; Emax = 18%).  相似文献   

5.
The commonly used beverage and psychostimulant caffeine is known to inhibit human acetylcholinesterase enzyme. This pharmacological activity of caffeine is partly responsible for its cognition enhancing properties. However, the exact mechanisms of its binding to human cholinesterases (acetyl and butyrylcholinesterase; hAChE and hBuChE) are not well known. In this study, we investigated the cholinesterase inhibition by the xanthine derivatives caffeine, pentoxifylline, and propentofylline. Among them, propentofylline was the most potent AChE inhibitor (hAChE IC50 = 6.40 μM). The hAChE inhibitory potency was of the order: caffeine (hAChE IC50 = 7.25 μM) < pentoxifylline (hAChE IC50 = 6.60 μM) ? propentofylline (hAChE IC50 = 6.40 μM). These compounds were less potent relative to the reference agent donepezil (hAChE IC50 = 0.04 μM). Moreover, they all exhibited selective inhibition of hAChE with no inhibition of hBuChE (IC50 > 50 μM) relative to the reference agent donepezil (hBuChE IC50 = 13.60 μM). Molecular modeling investigations indicate that caffeine binds primarily in the catalytic site (Ser203, Glu334 and His447) region of hAChE whereas pentoxifylline and propentofylline are able to bind to both the catalytic site and peripheral anionic site due to their increased bulk/size, thereby exhibiting superior AChE inhibition relative to caffeine. In contrast, their lack of hBuChE inhibition is due to a larger binding site and lack of key aromatic amino acids. In summary, our study has important implications in the development of novel caffeine derivatives as selective AChE inhibitors with potential application as cognitive enhancers and to treat various forms of dementia.  相似文献   

6.
Three structurally related sets of hydroisobenzofuran analogs of sclerophytin A were prepared in three or four steps from (S)-(+)-carvone via an aldol-cycloaldol sequence. The most potent members of each set of analogs exhibited IC50’s of 1–3 μM in growth inhibitory assays against KB3 cells. The NCI 60-cell line 5-dose assay for analog 6h revealed a GI50 = 0.148 μM and LC50 = 9.36 μM for the RPMI-8226 leukemia cell line, and a GI50 = 0.552 μM and LC50 = 26.8 μM for the HOP-92 non-small cell lung cancer cell line.  相似文献   

7.
Three novel series of diaryl heterocyclic derivatives bearing the 2-oxo-5H-furan, 2-oxo-3H-1,3-oxazole, and 1H-pyrazole moieties as the central heterocyclic ring were synthesized and their in vitro inhibitory activities on COX-1 and COX-2 isoforms were evaluated using a purified enzyme assay. The 2-oxo-5H-furan derivative 6b was identified as potent COX inhibitor with selectivity toward COX-1 (COX-1 IC50 = 0.061 μM and COX-2 IC50 = 0.325 μM; selectivity index (SI) = 0.19). Among the 1H-pyrazole derivatives, 11b was found to be a potent COX-2 inhibitor, about 38 times more potent than Rofecoxib (COX-2 IC50 = 0.011 μM and 0.398 μM, respectively), but showed no selectivity for COX-2 isoform. Compound 11c demonstrated strong and selective COX-2 inhibitory activity (COX-1 IC50 = 1 μM, COX-2 IC50 = 0.011 μM; SI = ~92). Molecular docking studies of compounds 6b and 11bd into the binding sites of COX-1 and COX-2 allowed to shed light on the binding mode of these novel COX inhibitors.  相似文献   

8.
A novel series of 2-(3-phenethyl-4(3H)quinazolin-2-ylthio)-N-substituted anilide and substituted phenyl 2-(3-phenethyl-4(3H) quinazolin-2-ylthio)acetate were designed, synthesized and evaluated for their in-vitro antitumor activity. Compound 15 possessed remarkable broad-spectrum antitumor activity which almost sevenfold more active than the known drug 5-FU with GI50 values of 3.16 and 22.60 μM, respectively. Compound 15 exhibited remarkable growth inhibitory activity pattern against renal cancer (GI50 = 1.77 μM), colon cancer (GI50 = 2.02 μM), non-small cell lung cancer (GI50 = 2.04 μM), breast cancer (GI50 = 2.77 μM), ovarian cancer (GI50 = 2.55 μM) and melanoma cancer (GI50 = 3.30 μM). Docking study was performed for compound 15 into ATP binding site of EGFR-TK which showed similar binding mode to erlotinib.  相似文献   

9.
The anti-Trypanosoma cruzi activity of 5-nitro-2-furfuriliden derivatives as well as the cytotoxicity of these compounds on J774 macrophages cell line and FN1 human fibroblast cells were investigated in this study. The most active compounds of series I and II were 4-butyl-[N′-(5-nitrofuran-2-yl) methylene] benzidrazide (3g; IC50 = 1.05 μM ± 0.07) and 3-acetyl-5-(4-butylphenyl)-2-(5-nitrofuran-2-yl)-2,3-dihydro,1,3,4-oxadiazole (4g; IC50 = 8.27 μM ± 0.42), respectively. Also, compound 3g was more active than the standard drugs, benznidazole (IC50 = 22.69 μM ± 1.96) and nifurtimox (IC50 = 3.78 μM ± 0.10). Regarding the cytotoxicity assay, the 3g compound presented IC50 value of 28.05 μM (SI = 26.71) against J774 cells. For the FN1 fibroblast assay, 3g showed IC50 value of 98 μM (SI = 93.33). On the other hand, compound 4g presented a cytotoxicity value on J774 cells higher than 400 μM (SI >48), and for the FN1 cells its IC50 value was 186 μM (SI = 22.49). Moreover, an exploratory data analysis, which comprises hierarchical cluster (HCA) and principal component analysis (PCA), was carried out and the findings were complementary. The molecular properties that most influenced the compounds’ grouping were C log P and total dipole moment, pointing out the need of a lipophilic/hydrophilic balance in the designing of novel potential anti-T. cruzi molecules.  相似文献   

10.
A series of 2-(1-aryl-1H-imidazol-2-ylthio)acetamide [imidazole thioacetanilide (ITA)] derivatives were synthesized and evaluated as potent inhibitors of human immunodeficiency virus type-1 (HIV-1). Among them, the most potent HIV-1 inhibitors were 4a5 (EC50 = 0.18 μM), and 4a2 (EC50 = 0.20 μM), which were more effective than the lead compound L1 (EC50 = 2.053 μM) and the reference drugs nevirapine and delavirdine. The preliminary structure–activity relationship (SAR) of the newly synthesized congeners is discussed.  相似文献   

11.
The alkene peptide isostere for the d-Ala-d-Ala dipeptide was synthesized via a convergent approach utilizing olefin cross-metathesis. The new isostere was then evaluated for binding to the last resort antibiotic, vancomycin. The alkene isostere exhibited a KD = 90 μM in comparison to the native peptide (KD = 2.3 μM) and Lac mutant (KD = 2300 μM). This study demonstrates that loss of binding in vancomycin resistant strains as a result of a d-Ala to d-Lac mutation is from both the loss of a crucial hydrogen bond and introduction of a repulsive lone pair interaction.  相似文献   

12.
Three classes of novel inhibitors of inosine monophosphate dehydrogenase have been prepared and their anti-proliferative properties were evaluated against several cancer cell lines.(1) Mycophenolic adenine dinucleotide analogues (813) containing a substituent at the C2 of adenine ring were found to be potent inhibitors of IMPDH (Ki’s in range of 0.6–82 nM) and sub-μM inhibitors of leukemic K562 cell proliferation. (2) Mycophenolic adenosine (d and l) esters (20 and 21) showed a potent inhibition of IMPDH2 (Ki = 102 and Ki = 231 nM, respectively) and inhibition of K562 cell growth (IC50 = 0.5 and IC50 = 1.6 μM). These compounds serve both as inhibitors of the enzyme and as a depot form of mycophenolic acid. The corresponding amide analogue 22, also a potent inhibitor of IMPDH (Ki = 84 nM), did not inhibit cancer cell proliferation. (3) Mycophenolic-(l)- and (d)-valine adenine di-amide derivatives 25 (Ki = 9 nM) and 28 (Ki = 3 nM) were found to be very potent enzymatically, but did not inhibit proliferation of cancer cells.  相似文献   

13.
The efficient synthesis of a new series of polyhydroxylated dibenzyl ω-(1H-1,2,3-triazol-1-yl)alkylphosphonates as acyclic nucleotide analogues is described starting from dibenzyl ω-azido(polyhydroxy)alkylphosphonates and selected alkynes under microwave irradiation. Selected O,O-dibenzylphosphonate acyclonucleotides were transformed into the respective phosphonic acids. All compounds were evaluated in vitro for activity against a broad variety of DNA and RNA viruses and for cytostatic activity against murine leukemia L1210, human T-lymphocyte CEM and human cervix carcinoma HeLa cells. Compound (1S,2S)-16b exhibited antiviral activity against Influenza A H3N2 subtype (EC50 = 20 μM—visual CPE score; EC50 = 18 μM—MTS method; MCC >100 μM, CC50 >100 μM) in Madin Darby canine kidney cell cultures (MDCK), and (1S,2S)-16k was active against vesicular stomatitis virus and respiratory syncytial virus in HeLa cells (EC50 = 9 and 12 μM, respectively). Moreover, compound (1R,2S)-16l showed activity against both herpes simplex viruses (HSV-1, HSV-2) in HEL cell cultures (EC50 = 2.9 and 4 μM, respectively) and feline herpes virus in CRFK cells (EC50 = 4 μM) but at the same time it exhibited cytotoxicity toward uninfected cell (MCC  4 μM). Several other compounds have been found to inhibit proliferation of L1210, CEM as well as HeLa cells with IC50 in the 4–50 μM range. Among them compounds (1S,2S)- and (1R,2S)-16l were the most active (IC50 in the 4–7 μM range).  相似文献   

14.
Three series of homologous dendritic amphiphiles—RCONHC(CH2CH2COOH)3, 1(n); ROCONHC(CH2CH2COOH)3, 2(n); RNHCONHC(CH2CH2COOH)3, 3(n), where R = n-CnH2n+1 and n = 13–22 carbon atoms—were assayed for their potential to serve as antimicrobial components in a topical vaginal formulation. Comparing epithelial cytotoxicities to the ability of these homologues to inhibit HIV, Neisseria gonorrhoeae, and Candida albicans provided a measure of their prophylactic/therapeutic potential. Measurements of the ability to inhibit Lactobacillus plantarum, a beneficial bacterium in the vagina, and critical micelle concentrations (CMCs), an indicator of the potential detergency of these amphiphiles, provided additional assessments of safety. Several amphiphiles from each homologous series had modest anti-HIV activity (EC50 = 110–130 μM). Amphiphile 2(18) had the best anti-Neisseria activity (MIC = 65 μM), while 1(19) and 1(21) had MICs against C. albicans of 16 and 7.7 μM, respectively. Two measures of safety showed promise as all compounds had relatively low cytotoxic activity (EC50 = 210–940 μM) against epithelial cells and low activity against L. plantarum, 1(n), 2(n), and 3(n) had MICs ? 490, 1300, and 940 μM, respectively. CMCs measured in aqueous triethanolamine and in aqueous potassium hydroxide showed linear dependences on chain length. As expected, the longest chain in each series had the lowest CMC—in triethanolamine: 1(21), 1500 μM; 2(22), 320 μM; 3(22), 340 μM, and in potassium hydroxide: 1(21), 130 μM; 3(22), 40 μM. The CMC in triethanolamine adjusted to pH 7.4 was 400 μM for 1(21) and 3900 μM for 3(16). The promising antifungal activity, low activity against L. plantarum, relatively high CMCs, and modest epithelial cytotoxicity in addition to their anti-Neisseria properties warrant further design studies with dendritic amphiphiles to improve their safety indices to produce suitable candidates for antimicrobial vaginal products.  相似文献   

15.
The synthesis, crystallographic analysis and magnetic studies of six new copper(II) complexes of formulae [Cu(μ-ala)(im)(H2O)]n(ClO4)n (1), [Cu(μ-ala)(pz)(μ-ClO4)] (2), [Cu(μ-phe)(im)(H2O)]n(ClO4)n (3), [Cu(μ-gly)(H2O)(ClO4)]n (4), [Cu(μ-gly)(pz)(ClO4)]n(5) and [Cu(μ-pro)(pz)(ClO4)]n (6) have been carried out (ala = alanine; phe = phenylalanine; gly = glycine; pro = proline; im = imidazole; pz = pyrazole). In all cases, the deprotonated aminoacid ligand acts as chelate through the N(amine) and one O(carboxylato), whereas the second O atom of the same carboxylato acts as a bridge to the neighbouring copper(II) ion. The coordination of copper(II) ions is square-pyramidal in all complexes but 2 (elongated Oh). All complexes (16) are uniform chains with syn–anti (equatorial–equatorial) coordination mode of the carboxylato bridging ligand, exhibiting intrachain ferromagnetic interactions.  相似文献   

16.
Henneguya jocu n. sp. (Myxosporea, Myxobolidae) is described from the gill lamellae of the marine teleost fish Lutjanus jocu, with a focus on ultrastructural and molecular features. This myxosporean forms subspherical cysts up to ∼260 μm × 130 μm long, and develops asynchronously. Mature myxospores ellipsoidal with a bifurcated caudal process. Myxospore length 10.9 ± 0.4 μm (n = 50); width, 8.2 ± 0.3 μm (n = 50); and thickness, 2.9 ± 0.5 μm (n = 50). Two equal caudal processes, 34.1 ± 1.0 μm long (n = 50); and total myxospore length, 45.2 ± 1.0 μm (n = 50). Two symmetric valves surround two ellipsoidal polar capsules, 5.0 ± 0.3 × 1.4 ± 0.2 μm (n = 20), each containing an isofilar polar filament forming 4–5 coils along the inner wall of these structures, as well as a binucleated sporoplasm presenting a spherical vacuole and several globular sporoplasmosomes. Both the morphological data and molecular analysis of the SSU rDNA gene identify this parasite as a new species of the genus Henneguya. Maximum Likelihood and Maximum Parsimony analyses further indicate that the parasite clusters within others marine Myxobolidae species, forming a group alongside other Henneguya species described from marine hosts.  相似文献   

17.
Linear and depressed skull fractures are frequent mechanisms of head injury and are often associated with traumatic brain injury. Accurate knowledge of the fracture of cranial bone can provide insight into the prevention of skull fracture injuries and help aid the design of energy absorbing head protection systems and safety helmets. Cranial bone is a complex material comprising of a three-layered structure: external layers consist of compact, high-density cortical bone and the central layer consists of a low-density, irregularly porous bone structure.In this study, cranial bone specimens were extracted from 8 fresh-frozen cadavers (F=4, M=4; 81±11 years old). 63 specimens were obtained from the parietal and frontal cranial bones. Prior to testing, all specimens were scanned using a μCT scanner at a resolution of 56.9 μm. The specimens were tested in a three-point bend set-up at different dynamic speeds (0.5, 1 and 2.5 m/s). The associated mechanical properties that were calculated for each specimen include the 2nd moment of inertia, the sectional elastic modulus, the maximum force at failure, the energy absorbed until failure and the maximum bending stress. Additionally, the morphological parameters of each specimen and their correlation with the resulting mechanical parameters were examined.It was found that testing speed, strain rate, cranial sampling position and intercranial variation all have a significant effect on some or all of the computed mechanical parameters. A modest correlation was also found between percent bone volume and both the elastic modulus and the maximum bending stress.  相似文献   

18.
Current study based on the synthesis of new thiazole derivatives via “one pot” multicomponent reaction, evaluation of their in vitro α-glucosidase inhibitory activities, and in silico studies. All synthetic compounds were fully characterized by 1H NMR, 13C NMR and EIMS. CHN analysis was also performed. These newly synthesized compounds showed activities in the range of IC50 = 9.06 ± 0.10–82.50 ± 1.70 μM as compared to standard acarbose (IC50 = 38.25 ± 0.12 μM). It is worth mentioning that most of the compounds such as 1 (IC50 = 23.60 ± 0.39 μM), 2 (IC50 = 22.70 ± 0.60 μM), 3 (IC50 = 22.40 ± 0.32 μM), 4 (IC50 = 26.5 ± 0.40 μM), 6 (IC50 = 34.60 ± 0.60 μM), 7 (IC50 = 26.20 ± 0.43 μM), 8 (IC50 = 14.06 ± 0.18 μM), 9 (IC50 = 17.60 ± 0.28 μM), 10 (IC50 = 27.16 ± 0.41 μM), 11 (IC50 = 19.16 ± 0.19 μM), 12 (IC50 = 9.06 ± 0.10 μM), 13 (IC50 = 12.80 ± 0.21 μM), 14 (IC50 = 11.94 ± 0.18 μM), 15 (IC50 = 16.90 ± 0.20 μM), 16 (IC50 = 12.60 ± 0.14 μM), 17 (IC50 = 16.30 ± 0.29 μM), and 18 (IC50 = 32.60 ± 0.61 μM) exhibited potent inhibitory potential. Molecular docking study was performed in order to understand the molecular interactions between the molecule and enzyme. Newly identified α-glucosidase inhibitors except few were found to be completely non-toxic.  相似文献   

19.
This paper describes a facile protocol, efficient, and environmentally benign for the synthesis a series of barbiturate acid substituted at C5 position 3a–o. The desired compounds subjected in vitro for different set of bioassays including against anti-oxidant (DPPH and super oxide scavenger assays), anti-cancer, α-glucosidase and β-glucuronidase inhibitions. Compound 3m (IC50 = 22.9 ± 0.5 μM) found to be potent α-glucosidase enzyme inhibitors and showed more activity than standard acarbose (IC50 = 841 ± 1.73 μM). Compound 3f (IC50 = 86.9 ± 4.33 μM) found to be moderate β-Glucuronidase enzyme inhibitors and showed activity comparatively less than the standard d-saccharic acid 1,4-lactone (IC50 = 45.75 ± 2.16 μM). Furthermore, in sillico investigation was carried out to investigate bonding mode of barbiturate acid derivatives.  相似文献   

20.
Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n = 11, male, age 18–78 years) from 11 proximal femurs were characterized using dynamic and stress-relaxation testing at the apparent-level and with creep nanoindentation at the tissue-level. In addition, bone tissue elasticity was determined using scanning acoustic microscope (SAM). Tissue composition and collagen crosslinks were assessed using Raman micro-spectroscopy and high performance liquid chromatography (HPLC), respectively. Values of material parameters were obtained from finite element (FE) models by optimizing tissue-level creep and apparent-level stress-relaxation to experimental nanoindentation and unconfined compression testing values, respectively, utilizing the second order Prony series to depict viscoelasticity. FE simulations showed that tissue-level equilibrium elastic modulus (Eeq) increased with increasing crystallinity (r = 0.730, p = .011) while at the apparent-level it increased with increasing hydroxylysyl pyridinoline content (r = 0.718, p = .019). In addition, the normalized shear modulus g1 (r = −0.780, p = .005) decreased with increasing collagen ratio (amide III/CH2) at the tissue-level, but increased (r = 0.696, p = .025) with increasing collagen ratio at the apparent-level. No significant relations were found between the measured or simulated viscoelastic parameters at the tissue- and apparent-levels nor were the parameters related to tissue elasticity determined with SAM. However, only Eeq, g2 and relaxation time τ1 from simulated viscoelastic values were statistically different between tissue- and apparent-levels (p < .01). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号