首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
脂质筏在信号转导中的作用   总被引:1,自引:0,他引:1  
霍海蓉  廖侃 《生命的化学》2003,23(6):433-435
细胞质膜对膜上受体的细胞外到细胞内的跨膜信号转导具有十分重要的意义。目前的研究表明膜上受体在介导跨膜信号转导时,通常是在细胞质膜上的胞膜窖和脂质筏结构中进行的。胞膜窖和脂质筏都是细胞膜上富含胆固醇和鞘磷脂的脂质有序结构域。其中,胞膜窖是一种有窖蛋白包被的特殊的脂质筏结构,通常在细胞膜上形成内陷的小窝。许多细胞膜上的受体都已经被发现位于胞膜窖和脂质筏中。同时,在脂质筏的胞质侧富集了大量的细胞内信号分子,这些信号分子集聚形成信号分子复合体,使得受体的细胞内结构域很容易就与大量的细胞内信号分子发生相互作用,为信号的起始和交叉作用提供了一个结构平台。  相似文献   

3.
4.
5.
The TonB system couples cytoplasmic membrane proton motive force (pmf) to active transport of diverse nutrients across the outer membrane. Current data suggest that cytoplasmic membrane proteins ExbB and ExbD harness pmf energy. Transmembrane domain (TMD) interactions between TonB and ExbD allow the ExbD C terminus to modulate conformational rearrangements of the periplasmic TonB C terminus in vivo. These conformational changes somehow allow energization of high-affinity TonB-gated transporters by direct interaction with TonB. While ExbB is essential for energy transduction, its role is not well understood. ExbB has N-terminus-out, C-terminus-in topology with three TMDs. TMDs 1 and 2 are punctuated by a cytoplasmic loop, with the C-terminal tail also occupying the cytoplasm. We tested the hypothesis that ExbB TMD residues play roles in proton translocation. Reassessment of TMD boundaries based on hydrophobic character and residue conservation among distantly related ExbB proteins brought earlier widely divergent predictions into congruence. All TMD residues with potentially function-specific side chains (Lys, Cys, Ser, Thr, Tyr, Glu, and Asn) and residues with probable structure-specific side chains (Trp, Gly, and Pro) were substituted with Ala and evaluated in multiple assays. While all three TMDs were essential, they had different roles: TMD1 was a region through which ExbB interacted with the TonB TMD. TMD2 and TMD3, the most conserved among the ExbB/TolQ/MotA/PomA family, played roles in signal transduction between cytoplasm and periplasm and the transition from ExbB homodimers to homotetramers. Consideration of combined data excludes ExbB TMD residues from direct participation in a proton pathway.  相似文献   

6.
The signaling mechanisms that regulate CLC anion channels are poorly understood. Caenorhabditis elegans CLH-3b is a member of the CLC-1/2/Ka/Kb channel subfamily. CLH-3b is activated by meiotic cell-cycle progression and cell swelling. Inhibition is brought about by GCK-3 kinase-mediated phosphorylation of S742 and S747 located on a ∼176 amino acid disordered domain linking CBS1 and CBS2. Much of the inter-CBS linker is dispensable for channel regulation. However, deletion of a 14 amino acid activation domain encompassing S742 and S747 inhibits channel activity to the same extent as GCK-3. The crystal structure of CmCLC demonstrated that CBS2 interfaces extensively with an intracellular loop connecting membrane helices H and I, the C-terminus of helix D, and a short linker connecting helix R to CBS1. Point mutagenesis of this interface identified two highly conserved aromatic amino acid residues located in the H-I loop and the first α-helix (α1) of CBS2. Mutation of either residue to alanine rendered CLH-3b insensitive to GCK-3 inhibition. We suggest that the dephosphorylated activation domain normally interacts with CBS1 and/or CBS2, and that conformational information associated with this interaction is transduced through a conserved signal transduction module comprising the H-I loop and CBS2 α1.  相似文献   

7.
To determine whether N-terminal sequences are involved in the transmembrane signaling mechanism of EnvZ, the nucleotide sequences of envZ genes from several enteric bacteria were determined. Comparative analysis revealed that the amino acid sequence between Pro41 and Glu53 was highly conserved. To further analyze the role of the conserved sequence, envZ of Escherichia coli was subjected to random PCR mutagenesis and mutant alleles that produced a high-osmolarity phenotype, in which ompF was repressed, were isolated. The mutations identified clustered within, as well as adjacent to, the Pro41-to-Glu53 sequence. These findings suggest that the conserved Pro41-to-Glu53 sequence is involved in the signal transduction mechanism of EnvZ.  相似文献   

8.
The growing use of fluorescent biosensors to directly probe the spatiotemporal dynamics of biochemical processes in living cells has revolutionized the study of intracellular signaling. In this review, we summarize recent developments in the use of biosensors to illuminate the molecular details of G-protein-coupled receptor (GPCR) signaling pathways, which have long served as the model for our understanding of signal transduction, while also offering our perspectives on the future of this exciting field. Specifically, we highlight several ways in which biosensor-based single-cell analyses are being used to unravel many of the enduring mysteries that surround these diverse signaling pathways.  相似文献   

9.
Genetic Analysis of Gibberellin Signal Transduction   总被引:21,自引:1,他引:20       下载免费PDF全文
  相似文献   

10.
11.
TAT蛋白转导域:蛋白质治疗的新曙光   总被引:7,自引:0,他引:7  
TAT蛋白转导域是源自人类免疫缺陷病毒Tat蛋白的一段碱性氨基酸多肽,能够将与之共价连接的多肽、蛋白、核酸等生物大分子快速而高效地转导入细胞内部,在药物转运和疾病治疗等领域有着巨大的应用潜力.TAT蛋白转导域首先通过电荷相互作用吸附于细胞膜,然后通过脂筏介导的巨胞饮作用进入细胞.随着体外研究的不断成熟,应用TAT蛋白转导域治疗人类肿瘤、卒中、炎症等疾病的动物模型也获得了成功,TAT蛋白转导域进入临床指日可待.  相似文献   

12.
Among the 13 TLRs in the vertebrate systems, only TLR4 utilizes both Myeloid differentiation factor 88 (MyD88) and Toll/Interleukin-1 receptor (TIR)-domain-containing adapter interferon-β-inducing Factor (TRIF) adaptors to transduce signals triggering host-protective immune responses. Earlier studies on the pathway combined various experimental data in the form of one comprehensive map of TLR signaling. But in the absence of adequate kinetic parameters quantitative mathematical models that reveal emerging systems level properties and dynamic inter-regulation among the kinases/phosphatases of the TLR4 network are not yet available. So, here we used reaction stoichiometry-based and parameter independent logical modeling formalism to build the TLR4 signaling network model that captured the feedback regulations, interdependencies between signaling kinases and phosphatases and the outcome of simulated infections. The analyses of the TLR4 signaling network revealed 360 feedback loops, 157 negative and 203 positive; of which, 334 loops had the phosphatase PP1 as an essential component. The network elements'' interdependency (positive or negative dependencies) in perturbation conditions such as the phosphatase knockout conditions revealed interdependencies between the dual-specific phosphatases MKP-1 and MKP-3 and the kinases in MAPK modules and the role of PP2A in the auto-regulation of Calmodulin kinase-II. Our simulations under the specific kinase or phosphatase gene-deficiency or inhibition conditions corroborated with several previously reported experimental data. The simulations to mimic Yersinia pestis and E. coli infections identified the key perturbation in the network and potential drug targets. Thus, our analyses of TLR4 signaling highlights the role of phosphatases as key regulatory factors in determining the global interdependencies among the network elements; uncovers novel signaling connections; identifies potential drug targets for infections.  相似文献   

13.
Abstract

The hypothesis of structural alteration in transmembrane helices for signal transduction process is viewed by molecular dynamics simulation techniques. For the c-erbB-2 transmembrane domain involved in oncogenicity, the occurrence of conformational changes has been previously described as transition from the α to π helix. This dynamical feature is thoroughly analyzed for the wild phenotype and oncogenic sequences from a series of 18 simulations carried out on one nanosecond time scale. We show that these structural events do not depend upon the conditions of simulations like force field or starting helix coordinates. We demonstrate that the oncogenic mutations Val659 Glu, Gin and Asp do not prevent the transition. Furthermore, we show that β branched residues, in conjunction with Gly residues in the c-erbB-2 sequence, act as destabilizers for the α helix structure, π deformations are tightly related to other local structural motifs found in soluble and membrane proteins. These structural alterations are discussed in term of structure-activity relationships for the c-erbB-2 activating mechanism mediated by transmembrane domain dimerization.  相似文献   

14.
Urinary tract infection is the second most common infectious disease and is caused predominantly by type 1-fimbriated uropathogenic Escherichia coli (UPEC). UPEC initiates infection by attaching to uroplakin (UP) Ia, its urothelial surface receptor, via the FimH adhesins capping the distal end of its fimbriae. UP Ia, together with UP Ib, UP II, and UP IIIa, forms a  16-nm receptor complex that is assembled into hexagonally packed, two-dimensional crystals (urothelial plaques) covering > 90% of the urothelial apical surface. Recent studies indicate that FimH is the invasin of UPEC as its attachment to the urothelial surface can induce cellular signaling events including calcium elevation and the phosphorylation of the UP IIIa cytoplasmic tail, leading to cytoskeletal rearrangements and bacterial invasion. However, it remains unknown how the binding of FimH to the UP receptor triggers a signal that can be transmitted through the highly impermeable urothelial apical membrane. We show here by cryo-electron microscopy that FimH binding to the extracellular domain of UP Ia induces global conformational changes in the entire UP receptor complex, including a coordinated movement of the tightly bundled transmembrane helices. This movement of the transmembrane helix bundles can cause a corresponding lateral translocation of the UP cytoplasmic tails, which can be sufficient to trigger downstream signaling events. Our results suggest a novel pathogen-induced transmembrane signal transduction mechanism that plays a key role in the initial stages of UPEC invasion and receptor-mediated bacterial invasion in general.  相似文献   

15.
蛋白质组学在信号转导研究中的应用   总被引:2,自引:0,他引:2  
新近发展起来的蛋白质组学高通量技术引入到信号转导通路研究中,产生了一个新的研究领域:信号转导蛋白质组学。其作为功能蛋白质组学的一个重要组成部分,以研究信号转导通路以及其中的信号分子改变的蛋白质组学。克服了传统地针对单条信号转导通路以及其中的单个信号分子研究策略的局限性,能够在一次实验中系统地研究多条信号转导通路中的蛋白质一蛋白质间的相互作用、蛋白质磷酸化等翻译后修饰和下游靶蛋白的改变,有助于全面阐述信号转导通路,已成为一个新的研究热点。  相似文献   

16.
E. Raz  E. D. Schejter    B. Z. Shilo 《Genetics》1991,129(1):191-201
The large number of available embryonic lethal alleles in the Drosophila EGF receptor homolog (DER)/faint little ball locus allowed us to test the possibility of positive or negative interactions among different DER alleles. These interactions were monitored by examining the embryonic cuticular phenotypes of different heteroallelic combinations. Several positive interactions were identified, while negative interactions were restricted to a single allele. This is the first example of positive interactions within the same cell type among alleles of a receptor tyrosine kinase gene. The basis for these interactions is likely to arise from the mechanism of signal transduction by receptor tyrosine kinases, which involves receptor aggregation. A combination of two different DER mutant proteins defective in temporally distinct stages of the signal transduction process, may thus form a functional heterodimer. The mutation sites in four alleles showing positive interactions were localized. They identify regions within the protein which are likely to be important for these temporally distinct signal transduction processes.  相似文献   

17.
Single-pass transmembrane (TM) receptors transmit signals across lipid bilayers by helix association or by configurational changes within preformed dimers. The structure determination for such TM regions is challenging and has mostly been accomplished by NMR spectroscopy. Recently, the computational prediction of TM dimer structures is becoming recognized for providing models, including alternate conformational states, which are important for receptor regulation. Here we pursued a strategy to predict helix oligomers that is based on packing considerations (using the PREDDIMER webserver) and is followed by a refinement of structures, utilizing microsecond all-atom molecular dynamics simulations. We applied this method to plexin TM receptors, a family of 9 human proteins, involved in the regulation of cell guidance and motility. The predicted models show that, overall, the preferences identified by PREDDIMER are preserved in the unrestrained simulations and that TM structures are likely to be diverse across the plexin family. Plexin-B1 and –B3 TM helices are regular and tend to associate, whereas plexin-A1, -A2, –A3, -A4, -C1 and –D1 contain sequence elements, such as poly-Glycine or aromatic residues that distort helix conformation and association. Plexin-B2 does not form stable dimers due to the presence of TM prolines. No experimental structural information on the TM region is available for these proteins, except for plexin-C1 dimeric and plexin-B1 – trimeric structures inferred from X-ray crystal structures of the intracellular regions. Plexin-B1 TM trimers utilize Ser and Thr sidechains for interhelical contacts. We also modeled the juxta-membrane (JM) region of plexin-C1 and plexin-B1 and show that it synergizes with the TM structures. The structure and dynamics of the JM region and TM-JM junction provide determinants for the distance and distribution of the intracellular domains, and for their binding partners relative to the membrane. The structures suggest experimental tests and will be useful for the interpretation of future studies.  相似文献   

18.
19.
20.
脱落酸(ABA)是一种重要的植物激素,参与了种子萌发、气孔关闭及植物抗逆等多种生理过程。最新研究鉴定了ABA的三种类型受体,即FCA、CHLH和GCR2,特别是GCR2介导的信号转导(包括G蛋白偶联受体、G蛋白、相关靶酶等)研究取得重大突破,使人们对ABA的作用机制有了全面理解,从而为农业应用奠定了坚实基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号