首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Accurate measurement of cartilage deformation in loaded cadaver hip joints could be a valuable tool to answer clinically relevant research questions. MRI is a promising tool, but its use requires an understanding of cartilage deformation and recovery properties in the intact hip. Our objective was to answer the following questions: (1) How long does it take for hip cartilage to reach a deformed steady-state thickness distribution under simulated physiological load, and how much does the cartilage deform? (2) How long does it take for hip cartilage to return to the original cartilage thickness distribution once the load is removed?MethodsFive human hip specimens were axially loaded to 1980 N in a 7 T MR scanner and scanned every 15 min throughout loading. One specimen was scanned every hour throughout recovery from load. One repeatability specimen was loaded and scanned every day for 4 days. Hip cartilage was segmented as a single unit and thickness was measured radially.ResultsThe hip cartilage reached a steady-state thickness distribution after 225 min of load, and 16.5 h of recovery. Mean strain after 225 min of load was 30.9%. The repeatability specimen showed an average day-to-day change in mean cartilage thickness of 0.10 mm over 4 days of data collection. The amount of deformation (0.96 mm) was far greater than the image resolution (0.11 mm) and error due to repeatability (0.10 mm).ConclusionUsing an ex vivo model, this method has potential for assessing changes in hip cartilage strain due to injury or surgical intervention.  相似文献   

2.
Different parts of the articular cartilage were resected in 46 rabbits at the age of 2.5 months. The resected narrow stripe of the articular cartilage completely restored by the 60--90th day and the growth of the condyles was not disturbed. Resection of considerable areas of the articular cartilage on the condyles and on the femoral head was accompanied by a certain disturbance of the osseous tissue growth in these areas with resulted impression of the condyles, deformation of the head and further formation of coxa vara. The removal of 1/3 of the articular cartilage of the cotyloid cavity resulted in a certain increase of its diamter, uneven development at the site of resection; the femoral head of this joint increased, its spherical shape was altered. The restored cartilage did not restore its original structure characteristic for a growing bone. The newly formed articular cartilage lost its ability to participate in endochondral bone formation during the growth of the animal.  相似文献   

3.
The goal of this study was to investigate the influence of the acetabular labrum on the consolidation, and hence the solid matrix strains and stresses, of the cartilage layers of the hip joint. A plane-strain finite element model was developed, which represented a coronal slice through the acetabular and femoral cartilage layers and the acetabular labrum. Elements with poroelastic properties were used to account for the biphasic solid/fluid nature of the cartilage and labrum. The response of the joint over an extended period of loading (10,000s) was examined to simulate the nominal compressive load that the joint is subjected to throughout the day. The model demonstrated that the labrum adds an important resistance in the flow path of the fluid being expressed from the cartilage layers of the joint. Cartilage layer consolidation was up to 40% quicker in the absence of the labrum. Following removal of the labrum from the model, the solid-on-solid contact stresses between the femoral and acetabular cartilage layers were greatly increased (up to 92% higher), which would increase the friction between the joint surfaces. In the absence of the labrum, the centre of contact shifted towards the acetabular rim. Subsurface strains and stresses were much higher without the labrum, which could contribute to fatigue damage of the cartilage layers. Finally, the labrum provided some structural resistance to lateral motion of the femoral head within the acetabulum, enhancing joint stability and preserving joint congruity.  相似文献   

4.
5.
An appropriate method of application of the hip-joint force and stress analysis of the pelvic bone, in particular the acetabulum, is necessary to investigate the changes in load transfer due to implantation and to calculate the reference stimulus for bone remodelling simulations. The purpose of the study is to develop a realistic 3D finite element (FE) model of the hemi-pelvis and to assess stress and strain distribution during a gait cycle. The FE modelling approach of the pelvic bone was based on CT scan data and image segmentation of cortical and cancellous bone boundaries. Application of hip-joint force through an anatomical femoral head having a cartilage layer was found to be more appropriate than a perfectly spherical head, thereby leading to more accurate stress–strain distribution in the acetabulum. Within the acetabulum, equivalent strains varied between 0.1% and 0.7% strain in the cancellous bone. High compressive (15–30 MPa) and low tensile (0–5 MPa) stresses were generated within the acetabulum. The hip-joint force is predominantly transferred from the acetabulum through the lateral cortex to the sacroiliac joint and the pubic symphysis. The study is useful to understand the load transfer within the acetabulum and for further investigations on acetabular prosthesis.  相似文献   

6.
PurposeWe set out to investigate the potential confounding effect of variable concentration of N-acetyl-l-aspartate (NAA) and Glutamate (Glu) on measurement of the brain oncometabolite 2-hydroxyglutarate (2HG) using a standard MRS protocol. This issue may arise due to spectral overlap at clinical magnetic field strengths and thus complicate the usage of 2HG as a putative biomarker of gliomas bearing mutations of the isocitrate dehydrogenase (IDH) 1 and 2 genes.MethodsSpectra from 25 phantoms (50 mL falcon test tubes) containing a range of known concentrations of 2HG, NAA and Glu were acquired using a clinical 3 T scanner with a quadrature head coil, single-voxel point-resolved spectroscopy sequence with TE = 30 ms. Metabolite concentrations were estimated by linear combination analysis and a simulated basis set.ResultsNAA and Glu concentrations can have a significant confounding effect on 2HG measurements, whereby the negative changes in concentration of these metabolites typically observed in (peri)lesional areas can lead to under-estimation of 2HG concentration with respect to spectra acquired in presence of physiological levels of NAA and Glu.ConclusionThe confounding effect of NAA and Glu concentration changes needs to be considered: in patients, it may mask the presence of 2HG at low concentrations, however it is not expected to lead to false positives. 2HG data acquired using standard short echo-time MRS protocols should be considered with caution.  相似文献   

7.
8.
Two species of Tatria Kowalewski, 1904 are redescribed from grebes in Bulgaria: T. biremis Kowalewski, 1904 (specimens from Podiceps nigricollis) and T. minor Kowalewski, 1904 (specimens from P. cristatus and P. nigricollis). T. mircia Gulyaev, 1990 is synonymised with T. minor. The previous records of T. biremis, T. minor and T. mircia are critically analysed in view of the present results. T. gulyaevi n. sp. is described from P. nigricollis from Bulgaria and the Czech Republic and from an unidentified grebe species from Turkey. Some of the previous records of T. minor and T. biremis are recognised as belonging to T. gulyaevi. One specimen illustrated by Kowalewski (1904) is designated as a lectotype of T. minor in order to stabilise the nomenclatural standing of this species.  相似文献   

9.
The US Department of Energy has mandated the production of 16 billion gallons (60.6 billion liters) of renewable biofuel from cellulosic feedstocks by 2022. The perennial grass, Miscanthus × giganteus, is a potential candidate for cellulosic biofuel production because of high productivity with minimal inputs. This study determined the effect of three different spring fertilizer treatments (0, 60, and 120 kg N ha?1 yr?1 as urea) on biomass production, soil organic matter (SOM), and inorganic N leaching in Illinois, Kentucky, Nebraska, New Jersey, and Virginia, along with N2O and CO2 emissions at the IL site. There were no significant yield responses to fertilizer treatments, except at the IL site in 2012 (yields in 2012, year 4, varied from 10 to 23.7 Mg ha?1 across all sites). Potentially mineralizable N increased across all fertilizer treatments and sites in the 0–10 cm soil depth. An increase in permanganate oxidizable carbon (POX‐C, labile C) in surface soils occurred at the IL and NJ sites, which were regularly tilled before planting. Decreases in POX‐C were observed in the 0 – 10 cm soil depth at the KY and NE sites where highly managed turfgrass was grown prior to planting. Growing M. × giganteus altered SOM composition in only 4 years of production by increasing the amount of potentially mineralizable N at every site, regardless of fertilization amount. Nitrogen applications increased N leaching and N2O emission without increasing biomass production. This suggests that for the initial period (4 years) of M. × giganteus production, N application has a detrimental environmental impact without any yield benefits and thus should not be recommended. Further research is needed to define a time when N application to M. × giganteus results in increased biomass production.  相似文献   

10.
The aim of the present study is to examine the effect of dietary antioxidants on knee structure in a cohort of healthy, middle-aged subjects with no clinical knee osteoarthritis.  相似文献   

11.
12.
Miscanthus is a rhizomatous C4 grass of great interest as a biofuel crop because it has the potential to produce high yields over a wide geographical area with low agricultural inputs on marginal land less suitable for food production. At the moment, a clonal interspecific hybrid Miscanthus × giganteus is the most widely cultivated and studied in Europe and the United States, but breeding programmes are developing newer more productive varieties. Here, we quantified the physiological processes relating to whole season yield in a replicated plot trial in Wales, UK. Light capture and conversion efficiency were parameterized for four carefully selected genotypes (M. sinensis, M. sacchariflorus and Miscanthus × giganteus). Differences in the canopy architecture in mature stands as measured by the extinction coefficient (k) were small (0.55–0.65). Sensitivity analysis on a mathematical model of Miscanthus was performed to quantify the accumulative intercepted photosynthetically active radiation (iPAR) in the growing season using (i) k, (ii) variation in the thermal responses of leaf expansion rate, (iii) base temperature for degree days and (iv) date start of canopy expansion. A 10% increase in k or leaf area per degree day both had a minimal effect on iPAR (3%). Decreasing base temperature from 10 to 9 °C gave an 8% increase in iPAR. If the starting date for canopy expansion was the same as shoot emergence date, then the iPAR increases by 12.5%. In M. × giganteus, the whole season above ground and total (including below ground) radiation‐use efficiency (RUE) ranged from 45% to 37% higher than the noninterspecific hybrid genotypes. The greater yields in the interspecific hybrid M. × giganteus are explained by the higher RUE and not by differences in iPAR or partitioning effects. Studying the mechanisms underlying this complex trait could have wide benefits for both fuel and food production.  相似文献   

13.
14.
15.
The sterile triploid Miscanthus × giganteus is capable of yielding more biomass per unit land area than most other temperate crops. Although the yield potential of M. × giganteus is high, sterility requires all propagation of the plant to be done vegetatively. The traditional rhizome propagation system achieves relatively low multiplication rates, i.e. the number of new plants generated from a single‐parent plant, and requires tillage that leaves soil vulnerable to CO2 and erosion losses. A stem‐based propagation system is used in related crops like sugarcane, and may prove a viable alternative, but the environmental conditions required for shoot initiation from stems of M. × giganteus are unknown. A study was conducted to investigate the effect of temperature, illumination and node position on emergence of M. × giganteus shoots. Stems of M. × giganteus were cut into segments with a single node each, placed in controlled environments under varied soil temperature or light regimes and the number of emerged shoots were evaluated daily for 21 days. At temperatures of 20 and 25 °C, rhizomes produced significantly more shoots than did stem segments (= 0.0105 and 0.0594, respectively), but the difference was not significant at 30 °C, where 63% of stems produced shoots compared to 80% of rhizomes (= 0.2037). There was a strong positive effect (= 0.0086) of soil temperature on emergence in the range of temperatures studied here (15–30 °C). Node positions higher on the stem were less likely to emerge (< 0.0001) with a significant interaction between illumination and node position. Planting the lowest five nodes from stems of M. × giganteus in 30 °C soil in the light resulted in 75% emergence, which represents a potential multiplication rate 10–12 times greater than that of the current rhizome‐based system.  相似文献   

16.
The effect of chitosan derivatives with different degrees of polymerization and deamination, as well as of chitosan 6-O-sulfate and chitosanN-succinate-6-O-sulfate, on the reproduction of coliphages T2 and T7 inEscherichia coli and on the growth of this bacterium was studied. Chitosan derivatives decreased the yield of coliphages and exhibited antibacterial activity. The efficiency of inhibition of viral infection and the antibacterial activity of chitosan were found to be dependent on the degree of its polymerization. At the same time, there was no correlation between the degree of chitosan deamination and the extent of inhibition of viral infection. Anionic chitosan derivatives virtually did not possess antiviral or antibacterial activity. It is assumed that chitosan blocks some stages of phage reproduction. The decrease in the phage-producing ability ofE. coli may also be due to the antibacterial effect of chitosan.  相似文献   

17.
The effect of chitosan derivatives with different degrees of polymerization and deamination, as well as of chitosan 6-O-sulfate and chitosan N-succinate-6-O-sulfate, on the reproduction of coliphages T2 and T7 in Escherichia coli and on the growth of this bacterium was studied. Chitosan derivatives decreased the yield of coliphages and exhibited bactericidal activity. The efficiency of inhibition of viral infection and the bactericidal activity of chitosan were found to be dependent on the degree of its polymerization. At the same time, there was no correlation between the degree of chitosan deamination and the extent of inhibition of viral infection. Anionic chitosan derivatives virtually did not possess antiviral or bactericidal activity. It is assumed that chitosan blocks some stages of phage reproduction. The decrease in the phage-producing ability of E. coli may also be due to the bactericidal effect of chitosan.  相似文献   

18.
19.
Secreted proteins and peptides hold large potential both as therapeutics and as enzyme catalysts in biotechnology. The high stability of many secreted proteins helps maintain functional integrity in changing chemical environments and is a contributing factor to their commercial potential. Disulphide bonds constitute an important post-translational modification that stabilizes many of these proteins and thus preserves the active state under chemically stressful conditions. Despite their importance, the discovery and applications within this group of proteins and peptides are limited by the availability of synthetic biology tools and heterologous production systems that allow for efficient formation of disulphide bonds. Here, we refine the design of two DisCoTune (Disulphide bond formation in E. coli with tunable expression) plasmids that enable the formation of disulphides in the highly popular Escherichia coli T7 protein production system. We show that this new system promotes significantly higher yield and activity of an industrial protease and a conotoxin, which belongs to a group of disulphide-rich venom peptides from cone snails with strong potential as research tools and pharmacological agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号