首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hamstring strain injuries often occur near the proximal musculotendon junction (MTJ) of the biceps femoris. Post-injury remodeling can involve scar tissue formation, which may alter contraction mechanics and influence re-injury risk. The purpose of this study was to assess the affect of prior hamstring strain injury on muscle tissue displacements and strains during active lengthening contractions. Eleven healthy and eight subjects with prior biceps femoris injuries were tested. All previously injured subjects had since returned to sport and exhibited evidence of residual scarring along the proximal aponeurosis. Subjects performed cyclic knee flexion–extension on an MRI-compatible device using elastic and inertial loads, which induced active shortening and lengthening contractions, respectively. CINE phase-contrast imaging was used to measure tissue velocities within the biceps femoris during these tasks. Numerical integration of the velocity information was used to estimate two-dimensional tissue displacement and strain fields during muscle lengthening. The largest tissue motion was observed along the distal MTJ, with the active lengthening muscle exhibiting significantly greater and more homogeneous tissue displacements. First principal strain magnitudes were largest along the proximal MTJ for both loading conditions. The previously injured subjects exhibited less tissue motion and significantly greater strains near the proximal MTJ. We conclude that localized regions of high tissue strains during active lengthening contractions may predispose the proximal biceps femoris to injury. Furthermore, post-injury remodeling may alter the in-series stiffness seen by muscle tissue and contribute to the relatively larger localized tissue strains near the proximal MTJ, as was observed in this study.  相似文献   

2.
Hamstring strain injury is one of the most common injuries in athletes, particularly for sports that involve high speed running. The aims of this study were to determine whether muscle activation and internal morphology influence in vivo muscle behavior and strain injury susceptibility. We measured tissue displacement and strains in the hamstring muscle injured most often, the biceps femoris long head muscle (BFLH), using cine DENSE dynamic magnetic resonance imaging. Strain measurements were used to test whether strain magnitudes are (i) larger during active lengthening than during passive lengthening and (ii) larger for subjects with a relatively narrow proximal aponeurosis than a wide proximal aponeurosis. Displacement color maps showed higher tissue displacement with increasing lateral distance from the proximal aponeurosis for both active lengthening and passive lengthening, and higher tissue displacement for active lengthening than passive lengthening. First principal strain magnitudes were averaged in a 1cm region near the myotendinous junction, where injury is most frequently observed. It was found that strains are significantly larger during active lengthening (0.19 SD 0.09) than passive lengthening (0.13 SD 0.06) (p<0.05), which suggests that elevated localized strains may be a mechanism for increased injury risk during active as opposed to passive lengthening. First principal strains were higher for subjects with a relatively narrow aponeurosis width (0.26 SD 0.15) than wide (0.14 SD 0.04) (p<0.05). This result suggests that athletes who have BFLH muscles with narrow proximal aponeuroses may have an increased risk for BFLH strain injuries.  相似文献   

3.
Magnetic resonance and ultrasound imaging have shown hamstring strain injuries occur most often in the biceps femoris long head (BFLH), and particularly in the proximal vs. distal region of this muscle. Animal research and musculoskeletal modeling (MSK) have detected heterogeneous fascicle behavior within muscle regions, and within fascicles. Understanding architectural behavior differences during muscle contractions may help to discern possible mechanisms behind proximal BFLH injuries. The purpose of our study was to assess the magnitude of shortening of the proximal and distal fascicles of the BFLH under a range of muscle activation levels under isometric conditions using ultrasound imaging (US). Thirteen healthy adults performed targeted sustained isometric contractions while US were taken of the entire BFLH. Measurements of fascicle lengths in both muscle regions were compared at 20%, 30%, 50%, and 67% MVIC. The results showed that while both regions shortened significantly with activation, the proximal fascicles were significantly longer, regardless of activation level (~38%), and shortened significantly more than the distal fascicles overall (~40%), and cumulatively at higher activation levels (30% and above). No significant strain differences were found between the two regions. These data suggest heterogeneous fascicle behavior exists in an absolute sense; however, differences in behavior are eliminated when normalized (strain). Coupled with MSK literature, the absence of regional fascicle strain differences in this study may indicate strain heterogeneity is not detectable at the whole fascicle level. Further knowledge of this commonly strained muscle?s regional behavior during dynamic movements could provide evidence of proximal hamstring strain predisposition.  相似文献   

4.
The goal of this work was to create a finite element micromechanical model of the myotendinous junction (MTJ) to examine how the structure and mechanics of the MTJ affect the local micro-scale strains experienced by muscle fibers. We validated the model through comparisons with histological longitudinal sections of muscles fixed in slack and stretched positions. The model predicted deformations of the A-bands within the fiber near the MTJ that were similar to those measured from the histological sections. We then used the model to predict the dependence of local fiber strains on activation and the mechanical properties of the endomysium. The model predicted that peak micro-scale strains increase with activation and as the compliance of the endomysium decreases. Analysis of the models revealed that, in passive stretch, local fiber strains are governed by the difference of the mechanical properties between the fibers and the endomysium. In active stretch, strain distributions are governed by the difference in cross-sectional area along the length of the tapered region of the fiber near the MTJ. The endomysium provides passive resistance that balances the active forces and prevents the tapered region of the fiber from undergoing excessive strain. These model predictions lead to the following hypotheses: (i) the increased likelihood of injury during active lengthening of muscle fibers may be due to the increase in peak strain with activation and (ii) endomysium may play a role in protecting fibers from injury by reducing the strains within the fiber at the MTJ.  相似文献   

5.
The hamstring muscles frequently suffer injury during high-speed running, though the factors that make an individual more susceptible to injury remain poorly understood. The goals of this study were to measure the musculotendon dimensions of the biceps femoris long head (BFlh) muscle, the hamstring muscle injured most often, and to use computational models to assess the influence of variability in the BFlh’s dimensions on internal tissue strains during high-speed running. High-resolution magnetic resonance (MR) images were acquired over the thigh in 12 collegiate athletes, and musculotendon dimensions were measured in the proximal free tendon/aponeurosis, muscle and distal free tendon/aponeurosis. Finite element meshes were generated based on the average, standard deviation and range of BFlh dimensions. Simulation boundary conditions were defined to match muscle activation and musculotendon length change in the BFlh during high-speed running. Muscle and connective tissue dimensions were found to vary between subjects, with a coefficient of variation (CV) of 17±6% across all dimensions. For all simulations peak local strain was highest along the proximal myotendinous junction, which is where injury typically occurs. Model variations showed that peak local tissue strain increased as the proximal aponeurosis width narrowed and the muscle width widened. The aponeurosis width and muscle width variation models showed that the relative dimensions of these structures influence internal muscle tissue strains. The results of this study indicate that a musculotendon unit’s architecture influences its strain injury susceptibility during high-speed running.  相似文献   

6.
In the present study, we examined the hypothesis that stretch of tendinous tissue in the human tibialis anterior (TA) muscle-tendon unit upon isometric dorsiflexion maximum voluntary contraction (MVC) varies along the entire tendinous component length. Ultrasound-based measurements of the excursions of the TA tendon origin and proximal end of the TA central aponeurosis were taken in the transition from rest to MVC in six men. Subtracting the TA tendon origin excursion from the excursion of the aponeurosis proximal end, the aponeurosis excursion was estimated. Estimation of the aponeurosis proximal region excursion was obtained subtracting the excursion of the insertion point of a central region fascicle on the aponeurosis from the whole aponeurosis excursion. Subtracting tendon excursion from the excursion of the central fascicle insertion point, the aponeurosis distal region excursion was estimated. Strain values were calculated dividing the excursions obtained by the original resting lengths. All excursions and lengths were measured in the mid-longitudinal axis of the TA muscle-tendon unit at the neutral anatomical ankle position. Tendon excursion and strain were 0.5+/-0. 08 cm (mean+/-SE) and 3.1+/-0.2%, respectively. Aponeurosis excursion and strain were 1.1+/-0.15 cm and 6.5+/-0.6%, respectively. Aponeurosis distal region excursion and strain were 0.3+/-0.05 cm and 3.5+/-0.3%, respectively. Aponeurosis proximal region excursion and strain were 0.8+/-0.12 cm and 9.2+/-1%, respectively. Aponeurosis excursion and strain were larger by 110-120% (P<0.05) compared with tendon. Aponeurosis proximal region excursion and strain were larger by 165-170% (P<0.05) compared with aponeurosis distal region. These findings are in line with results from in vitro animal material testing and have important implications for theoretical models of muscle function.  相似文献   

7.
Effects of extramuscular myofascial force transmission on the acute effects of aponeurotomy were studied using finite element modeling and implications of such effects on surgery were discussed. Aponeurotomized EDL muscle of the rat was modeled in two conditions: (1) fully isolated (2) with intact extramuscular connections. The specific goal was to assess the alterations in muscle length-force characteristics in relation to sarcomere length distributions and to investigate how the mechanical mechanism of the intervention is affected if the muscle is not isolated. Major effects of extramuscular myofascial force transmission were shown on muscle length-force characteristics. In contrast to the identical proximal and distal forces of the aponeurotomized isolated muscle, substantial proximo-distal force differences were shown for aponeurotomized muscle with extramuscular connections (for all muscle lengths F (dist) > F (prox) after distal muscle lengthening). Proximal optimal length did not change whereas distal optimal length was lower (by 0.5 mm). The optimal forces of the aponeurotomized muscle with extramuscular connections exerted at both proximal and distal tendons were lower than that of isolated muscle (by 15 and 7%, respectively). The length of the gap separating the two cut ends of the intervened aponeurosis decreases substantially due to extramuscular myofascial force transmission. The amplitude of the difference in gap length was muscle length dependent (maximally 11.6% of the gap length of the extramuscularly connected muscle). Extramuscular myofascial force transmission has substantial effects on distributions of lengths of sarcomeres within the muscle fiber populations distal and proximal to the location of intervention: (a) Within the distal population, the substantial sarcomere shortening at the proximal ends of muscle fibers due to the intervention remained unaffected however, extramuscular myofascial force transmission caused a more pronounced serial distribution towards the distal ends of muscle fibers. (b) In contrast, extramuscular myofascial force transmission limits the serial distribution of sarcomere lengths shown for the aponeurotomized isolated muscle in the proximal population. Fiber stress distributions showed that extramuscular myofascial force transmission causes most sarcomeres within the aponeurotomized muscle to attain lengths favorable for higher force exertion. It is concluded that acute effects of aponeurotomy on muscular mechanics are affected greatly by extramuscular myofascial force transmission. Such effects have important implications for the outcome of surgery performed to improve impeded function since muscle in vivo is not isolated both anatomically and mechanically.  相似文献   

8.
Acute effects of intramuscular aponeurotomy on muscle force and geometry as a function to muscle length were studied in rat m. gastrocnemius medialis (GM). Acutely after aponeurotomy, activation of the muscle at increasing lengths (acute trajectory) showed a spontaneous and progressive but patial tearing of the connective tissue interface between the fibres inserting directly proximally and distally to the location of the section. After this the muscle consisted morphologically of a stable proximal and a distal part (post-aponeurotomy). Post-aponeurotomy mean active sarcomere length within fibres of the proximal part was shown to be unaffected. In contrast, mean sarcomere length within the distal part was reduced substantially after aponeurotomy. However active sarcomeres in the distal part were still attaining higher lengths with increasing muscle lengths (p<0.005), indicating myofascial force transmission through the intact part of the connective tissue interface of the muscle parts. Post-aponeurotomy optimum muscle force was reduced substantially to less than 45% of pre-aponeurotomy values. During the acute trajectory the muscle yielded approximately 20% higher forces than post-aponeurotomy, indicating that myofascial force transmission was related to the area of connective tissue interface. It is concluded that after aponeurotomy of the proximal aponeurosis of rat GM, fibres without direct myotendinous connection to the origin of the muscle are still able to contribute to muscle force. As the magnitude of reduction in muscle force can only be explained partially by the spontaneous rupture of the connective tissue interface between proximal and distal muscle part, other factors causing a decrease of muscle force are present. Clinical implication of acute effects of intramuscular aponeurotomy are discussed.  相似文献   

9.
The influence of muscle geometry on muscle shortening of the gastrocnemius medialis muscle (GM) of the rat was studied. Using cinematography, GM geometry was studied during isokinetic concentric activity at muscle lengths ranging from 85 to 105% of the optimum muscle length. The shortening speed of the distal fibre, the proximal aponeurosis and the muscle were determined, as well as the effect of rotation of the distal fibre and the proximal aponeurosis on the muscle speed of shortening. The results show that, due to the geometrical configuration, muscle shortening speed is not only determined by the speed of the fibre, but also to a large extent by the aponeurosis shortening speed. At optimum muscle length, the fibre and aponeurosis shortening speeds expressed relative to the muscle shortening speed amounted to 84% and 6%, respectively. At shorter muscle length, fibre speed relative to muscle speed decreased to values as low as 35%, whereas that of aponeurosis increased to values as high as 31%. Angular effects on the muscle speed of shortening can explain 10% of the muscle shortening speed at optimum muscle length and up to 34% of the muscle speed at shorter muscle length. In addition, a model was formulated to simulate the geometrical effects on muscle speed. This model, incorporating both fibre and aponeurosis length changes, contains a transfer function relating the shortening speeds of fibre and aponeurosis to muscle speed. The muscle shortening speed calculated using this transfer function demonstrated no significant differences with the speed measured experimentally.  相似文献   

10.
A finite element model was used to investigate the counter-intuitive experimental observation that some regions of the aponeuroses of a loaded and contracting muscle may shorten rather than undergo an expected lengthening. The model confirms the experimental findings and suggests that pennation angle plays a significant role in determining whether regions of the aponeuroses stretch or shorten. A smaller pennation angles (25°) was accompanied by aponeurosis lengthening whereas a larger pennation angle (47°) was accompanied by mixed strain effects depending upon location along the length of the aponeurosis. This can be explained by the Poisson effect during muscle contraction and a Mohr’s circle analogy. Constant volume constraint requires that fiber cross sectional dimensions increase when a fiber shortens. The opposing influences of these two strains upon the aponeurosis combine in proportion to the pennation angle. Lower pennation angles emphasize the influence of fiber shortening upon the aponeurosis and thus favor aponeurosis compression, whereas higher pennation angles increase the influence of cross sectional changes and therefore favor aponeurosis stretch. The distance separating the aponeuroses was also found to depend upon pennation angle during simulated contractions. Smaller pennation angles favored increased aponeurosis separation larger pennation angles favored decreased separation. These findings caution that measures of the mechanical properties of aponeuroses in intact muscle may be affected by contributions from adjacent muscle fibers and that the influence of muscle fibers on aponeurosis strain will depend upon the fiber pennation angle.  相似文献   

11.
Changes of architecture of adult rat gastrocnemius medialis muscle (GM) due to growth were studied in relation to length-force characteristics. Myofilament lengths were unchanged, indicating constant sarcomere length-force characteristics. Number of sarcomeres within fibers was unchanged as a consequence of growth, allowing persistence of differences between proximal and distal fibers in all age groups. Distal fiber length at muscle optimum length was shorter for the 14- than for the 10- and 16-week age groups despite a lack of difference of number of sarcomeres. This is indicative of a shift of optimum length. Some evidence for the occurrence of distribution of fiber optimum lengths with respect to muscle optimum length was found in other age groups as well, albeit of a smaller magnitude. Muscle and aponeurosis length increased substantially with growth. Functional effects of increased aponeurosis lengths were increased contributions to muscle length changes by the aponeurosis, allowing smaller fiber contributions in older animals. Fiber angle increased approximately 5 degrees with growth. Despite the differences of architecture indicated above, muscle length range between optimum length and active slack length was constant. This was probably caused by widening of this length range in the youngest age group by variations of architecture within the muscle. It is concluded that adaptation of aspects of muscle architecture is an important mechanism for adult muscle growth in rat GM. Of these aspects regulation of muscle length seems a dominant factor.  相似文献   

12.
This article investigates how the internal structure of muscle and its relationship with tendon and even skeletal structures influence the translation of muscle fiber contractions into movement of a limb. Reconstructions of the anatomy of the human soleus muscle from the Visible Human Dataset (available from the National Library of Medicine), magnetic resonance images (MRI), and cadaver studies revealed a complex 3D connective tissue structure populated with pennate muscle fibers. The posterior aponeurosis and the median septum of the soleus form the insertion of the muscle and are continuous with the Achilles tendon. The distal extremities of the pennate muscle fibers attach to these structures. The anterior aponeurosis is located intramuscularly, between the posterior aponeurosis and the median septum. It forms the origin of the muscle and contacts the proximal extremities of the soleus muscle fibers. MRI measurements of in vivo tissue velocities during isometric contractions (20% and 40% maximum voluntary contractions) revealed a similarly complex 3D distribution of tissue movements. The distribution of velocities was similar to the distribution of major connective tissue structures within the muscle. During an isometric contraction, muscle fiber contractions move the median septum and posterior aponeurosis proximally, relative to the anterior aponeurosis. The pennate arrangement of muscle fibers probably amplifies muscle fiber length changes but not sufficiently to account for the twofold difference in muscle fiber length changes relative to excursion of the calcaneus. The discrepancy may be accounted for by an additional gain mechanism operating directly on the Achilles tendon by constraining the posterior movement of the tendon, which would otherwise occur due to the increasingly posterior location of the calcaneus in plantarflexeion.  相似文献   

13.
Two questions were addressed in this study: (1) how much strain of the superficial aponeurosis of the human medial gastrocnemius muscle (MG) was obtained during voluntary isometric contractions in vivo, (2) whether there existed inhomogeneity of the strain along the superficial aponeurosis. Seven male subjects, whose knees were extended and ankles were flexed at right angle, performed isometric plantar flexion while elongation of superficial aponeurosis of MG was determined from the movements of the intersections made by the superficial aponeurosis and fascicles using ultrasonography. The strain of the superficial aponeurosis at the maximum voluntary contraction, estimated from the elongation and length data, was 5.6+/-1.2%. There was no significant difference in strain between the proximal and distal parts of the superficial aponeurosis. Based on the present result and that of our previous study for the same subjects (J. Appl. Physiol 90 (2001) 1671), a model was formulated for a contracting uni-pennate muscle-tendon unit. This model, which could be applied to isometric contractions at other angles and therefore of wide use, showed that similar strain between superficial and deep aponeuroses of MG contributed to homogeneous fascicle length change within MG during contractions. These findings would contribute to clarifying the functions of the superficial aponeurosis and the effects of the superficial aponeurosis elongation on the whole muscle behavior.  相似文献   

14.
Skeletal muscles can be injured by their own contractions, especially when the muscle is stretched during a lengthening contraction. Exposing a muscle to a conditioning protocol of stretches without activation (passive stretches) before lengthening contractions reduces contraction-induced injury. Although passive stretching does not damage muscle fibers, neutrophils are elevated in the muscle after passive stretches. Our purpose was to investigate the relationship between neutrophil accumulation following passive stretches and the protection from subsequent contraction-induced injury provided by the passive stretches. Our hypothesis was that passive stretch conditioning would not provide protection from subsequent lengthening contraction-induced injury under circumstances when the increase in muscle neutrophils in response to the conditioning was prevented. Extensor digitorum longus muscles of mice were conditioned with passive stretches 14 days before exposure to a protocol of damaging lengthening contractions. Mice were either untreated or treated with an antibody (RB6-8C5) that reduced the level of circulating neutrophils by over 95% before administration of passive stretches. Neutrophil levels recovered in treated mice by the time lengthening contractions were performed. Lengthening contractions were also administered to muscles with no prior exposure to passive stretches. Maximum isometric force, number of damaged fibers, and muscle neutrophil concentration were measured 3 days after lengthening contractions. Compared with nonconditioned control muscles, the severity of contraction-induced injury was not reduced by prior passive stretch conditioning when mice were treated with RB6-8C5 before conditioning. We conclude that neutrophils contribute to adaptations that protect muscles from injury.  相似文献   

15.
The Huxley 1957 model of cross-bridge cycling accounts for the shortening force-velocity curve of striated muscle with great precision. For forced lengthening, however, the model diverges from experimental results. This paper examines whether it is possible to bring the model into better agreement with experiments, and if so what must be assumed about the mechanical capabilities of cross-bridges. Of particular interest is how introduction of a maximum allowable cross-bridge strain, as has been suggested by some experiments, affects the predictions of the model. Because some differences in the models are apparent only at high stretch velocities, we acquired new force-velocity data to permit a comparison with experiment. Using whole, isolated frog sartorius muscles at 2 degrees C, we stretched active muscle at speeds up to and exceeding 2 Vmax. Force during stretch was always greater than the peak isometric level, even during the fastest stretches, and was approximately independent of velocity for stretches faster than 0.5 Vmax. Although certain modifications to the model brought it into closer correspondence with the experiments, the accompanying requirements on cross-bridge extensibility were unreasonable. We suggest (both in this paper and the one that follows) that sarcomere inhomogeneities, which have been implicated in such phenomena as "tension creep" and "permanent extra tension," may also play an important role in determining the basic force-velocity characteristics of muscle.  相似文献   

16.
A state-variable model for skeletal muscle, termed the "Distribution-Moment Model," is derived from A. F. Huxley's 1957 model of molecular contraction dynamics. The state variables are the muscle stretch and the three lowest-order moments of the bond-distribution function (which represent, respectively, the contractile tissue stiffness, the muscle force, and the elastic energy stored in the contractile tissue). The rate equations of the model are solved under various conditions, and compared to experimental results for the cat soleus muscle subjected to constant stimulation. The model predicts several observed effects, including yielding of the muscle force in constant velocity stretches, different "force-velocity relations" in isotonic and isovelocity experiments, and a decrease of peak force below the isometric level in small-amplitude sinusoidal stretches. Chemical energy and heat rates predicted by the model are also presented.  相似文献   

17.
Biomechanical assessments of muscle function are often performed using a generic musculoskeletal model created from anatomical measurements obtained from cadavers. Understanding the validity of using generic models to study movement biomechanics is critical, especially when such models are applied to analyze the walking patterns of persons with impaired mobility. The aim of this study was to evaluate the accuracy of scaled-generic models in determining the moment arms and functional roles of the lower-limb muscles during gait. The functional role of a muscle was described by its potential to contribute to the acceleration of a joint or the acceleration of the whole-body center of mass. A muscle's potential acceleration was defined as the acceleration induced by a unit of muscle force. Dynamic simulations of walking were generated for four children with cerebral palsy and five age-matched controls. Each subject was represented by a scaled-generic model and a model developed from magnetic resonance (MR) imaging. Calculations obtained from the scaled-generic model of each subject were evaluated against those derived from the corresponding MR-based model. Substantial differences were found in the muscle moment arms computed using the two models. These differences propagated to calculations of muscle potential accelerations, but predictions of muscle function (i.e., the direction in which a muscle accelerated a joint or the center of mass and the magnitude of the muscle's potential acceleration relative to that of other muscles) were consistent between the two modeling techniques. Our findings suggest that scaled-generic models and image-based models yield similar assessments of muscle function in both normal and pathological gait.  相似文献   

18.
Computational models of muscle generally lump the material properties of connective tissue, muscle fibers, and muscle fascicles together into one constitutive relationship that assumes a transversely isotropic microstructure. These models do not take into account how variations in the microstructure of muscle affect its macroscopic material properties. The goal of this work was to develop micromechanical models of muscle to determine the effects of variations in muscle microstructure on the macroscopic constitutive behavior. We created micromechanical models at the fiber and fascicle levels based on histological cross-sections of two rabbit muscles, the rectus femoris (RF) and the soleus, to determine the effects of microstructure geometry (fiber and fascicle shapes) on the along-fiber shear modulus of muscle. The two fiber-level models predicted similar macroscopic shear moduli (within 13.5% difference); however, the two fascicle-level models predicted very different macroscopic shear moduli (up to 161% difference). We also used the micromechanical models to test the assumption that the macroscopic properties of muscle are transversely isotropic about the fiber (or fascicle) direction. The fiber-level models exhibited behavior consistent with the transverse isotropy assumption; however, the fascicle-level models exhibited transversely anisotropic behavior. Micromechanical models, combined with fiber and fiber bundle mechanical experiments, are needed to understand how normal or pathological variations in microstructure give rise to the observed macroscopic behavior of muscle.  相似文献   

19.
Load-strain characteristics of tendinous tissues (Achilles tendon and aponeurosis) were determined in vivo for human medial gastrocnemius (MG) muscle. Seven male subjects exerted isometric plantar flexion torque while the elongation of tendinous tissues of MG was determined from the tendinous movements by using ultrasonography. The maximal strain of the Achilles tendon and aponeurosis, estimated separately from the elongation data, was 5.1 +/- 1.1 and 5.9 +/- 1.6%, respectively. There was no significant difference in strain between the Achilles tendon and aponeurosis. In addition, no significant difference in strain was observed between the proximal and distal regions of the aponeurosis. The results indicate that tendinous tissues of the MG are homogeneously stretched along their lengths by muscle contraction, which has functional implications for the operation of the human MG muscle-tendon unit in vivo.  相似文献   

20.
Uniaxial and biaxial mechanical properties of purified elastic tissue from the proximal thoracic aorta were studied to understand physiological load distributions within the arterial wall. Stress–strain behaviour was non-linear in uniaxial and inflation tests. Elastic tissue was 40% stiffer in the circumferential direction compared to axial in uniaxial tests and~100% stiffer in vessels at an axial stretch ratio of 1.2 or 1.3 and inflated to physiological pressure. Poisson’s ratio vθz averaged 0.2 and vzθ increased with circumferential stretch from ~0.2 to ~0.4. Axial stretch had little impact on circumferential behaviour. In intact (unpurified) vessels at constant length, axial forces decreased with pressure at low axial stretches but remained constant at higher stretches. Such a constant axial force is characteristic of incrementally isotropic arteries at their in vivo dimensions. In purified elastic tissue, force decreased with pressure at all axial strains, showing no trend towards isotropy. Analysis of the force–length–pressure data indicated a vessel with vθz≈0.2 would stretch axially 2–4% with the cardiac pulse yet maintain constant axial force. We compared the ability of 4 mathematical models to predict the pressure-circumferential stretch behaviour of tethered, purified elastic tissue. Models that assumed isotropy could not predict the stretch at zero pressure. The neo-Hookean model overestimated the non-linearity of the response and two non-linear models underestimated it. A model incorporating contributions from orthogonal fibres captured the non-linearity but not the zero-pressure response. Models incorporating anisotropy and non-linearity should better predict the mechanical behaviour of elastic tissue of the proximal thoracic aorta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号