首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small diameter transosseous wires are main parts of the Ilizarov frame concept. Wire tensioning is essential to gain the necessary transversal stiffness, and the wire fixators are therefore important, coupling the wire to the ring. The ability of three different wire fixator designs to maintain wire tension under dynamic loading is described. The three fixator designs were combinations of two types of bolts and one washer. In a simplified frame set-up consisting of one ring and one wire, sixty wires were dynamically loaded in sequence with 200N for 450 times and wire tension was repeatedly measured. The tension loss employing the different fixator types at two wire pretension levels (883N, 1275N) was measured. Wire slippage in the fixators and the midpoint deflection angle of the wires were measured. Large differences in fixation ability were observed. Wire fixators holding a larger and rougher contact surface had significant smaller tension loss compared to fixators with a smaller and smother contact surface. Both plastic wire deformation and slippage causes tension loss with slippage as the main contributor. Wire fixators' design can be improved in order to maintain wire tension. Such improvement could be of clinical interest enhancing the mechanical stability of the fixator.  相似文献   

2.
PurposeThe present study was designed to investigate the electromyographic (EMG) response in leg muscles to whole-body vibration while using different body positions and vibration frequencies.MethodsTwenty male sport sciences students voluntarily participated in this single-group, repeated-measures study in which EMG data from the vastus lateralis (VL) and the lateral gastrocnemius (LG) were collected over a total of 36 trials for each subject (4 static positions × 9 frequencies).ResultsWe found that vibration frequency, body position and the muscle stimulated had a significant effect (P-values ranged from 0.001 to 0.031) on the EMG response. Similarly, the muscle × frequency and position × muscle interactions were significant (P < 0.001). Interestingly, the frequency × positions interactions were not significant (P > 0.05).ConclusionsOur results indicate that lower frequencies of vibration (25–35 Hz) result in maximal activation of LG, whereas higher frequencies (45–55 Hz) elicit the highest responses in the VL. In addition, the position P2 (half squat position with the heels raised) is beneficial both for VL and LG, independently of the vibration frequency.  相似文献   

3.
The aim of this study is to investigate the biomechanics for orthodontic tooth movement (OTM) subjected to concurrent single-tooth vibration (50 Hz) with conventional orthodontic force application, via a clinical study and computational simulation. Thirteen patients were recruited in the clinical study, which involved distal retraction of maxillary canines with 1.5 N (150 g) force for 12 weeks. In a split mouth study, vibration and non-vibration sides were randomly assigned to each subject. Vibration of 50 Hz, of approximately 0.2 N (20 g) of magnitude, was applied on the buccal surface of maxillary canine for the vibration group. A mode-based steady-state dynamic finite element analysis (FEA) was conducted based on an anatomically detailed model, complying with the clinical protocol. Both the amounts of space closure and canine distalization of the vibration group were significantly higher than those of the control group, as measured intra-orally or on models (p < 0.05). Therefore it is indicated that a 50 Hz and 20 g single-tooth vibration can accelerate maxillary canine retraction. The volume-average hydrostatic stress (VHS) in the periodontal ligament (PDL) was computationally calculated to be higher with vibration compared with the control group for maxillary teeth and for both linguo-buccal and mesial-distal directions. An increase in vibratory frequency further amplified the PDL response before reaching a local natural frequency. An amplification of PDL response was also shown to be induced by vibration based on computational simulation. The vibration-enhanced OTM can be described by mild, vigorous and diminishing zones among which the mild zone is considered to be clinically beneficial.  相似文献   

4.
In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50 Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11 ± 498.99 µV before vibration. It decreased significantly during WBV (p < 0.0001). The maximum PP amplitude of T-reflex was 1333 ± 515 μV before vibration. It decreased significantly during WBV (p < 0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies.  相似文献   

5.
6.
7.
The present study aimed to investigate whether the in-plane resolution property of iterative reconstruction (IR) of computed tomography (CT) data is object shape-dependent by testing columnar shapes with diameters of 3, 7, and 10 cm (circular edge method) and a cubic shape with 5-cm side lengths (linear edge method). For each shape, objects were constructed of acrylic (contrast in Hounsfield units [ΔHU] = 120) as well as a soft tissue equivalent material (ΔHU = 50). For each shape, we measured the modulation transfer functions (MTFs) of IR and filtered back projection (FBP) using two multi-slice CT scanners at scan doses of 5 and 10 mGy. In addition, we evaluated a thin metal wire using the conventional method at 10 mGy. For FBP images, the MTF results of the tested objects and the wire method showed substantial agreement, thus demonstrating the validity of our analysis technique. For IR images, the MTF results of different shapes were nearly identical for each object contrast and dose combination, and we did not observe shape-dependent effects of the resolution properties of either tested IR. We conclude that both the circular edge method and linear edge method are equally useful for evaluating the resolution properties of IRs.  相似文献   

8.
Wire fences are widely used in rangelands around the world and may have a negative impact on wildlife that varies among species and habitats. The guanaco (Lama guanicoe) is the largest Patagonian ungulate and though entanglement in wire fences is frequently reported, its impact on guanaco populations has not been previously evaluated. We estimated annual mortality rate of wild guanacos due to entanglement in wire fences and evaluated whether the frequency of entanglement was age-dependent in the two wire-fence designs traditionally used in Patagonian sheep ranches. We found that annual yearling mortality on fences (5.53%) was higher than adult mortality (0.84%) and was more frequent in ovine (93 cm high) than bovine (113 cm) fences. Most guanacos died entangled by their legs in the highest wire when trying to jump over the fence. Our results suggest that guanacos are more likely to die due to fence entanglement than ungulates studied in other regions. Indirect effects of wire fences should also be considered as they may act as semi-permeable barriers for guanaco populations. We suggest removal of unnecessary wire fences and replacement by guanaco-friendly fences, like high-tensile electric fences that may reduce mortality and barrier-effect on guanaco populations.  相似文献   

9.
Proper tension of the knee’s soft tissue envelope is important during total knee arthroplasty; incorrect tensioning potentially leads to joint stiffness or instability. The latter remains an important trigger for revision surgery. The use of sensors quantifying the intra-articular loads, allows surgeons to assess the ligament tension at the time of surgery. However, realistic target values are missing. In the framework of this paper, eight non-arthritic cadaveric specimens were tested and the intra-articular loads transferred by the medial and lateral compartment were measured using custom sensor modules. These modules were inserted below the articulating surfaces of the proximal tibia, with the specimens mounted on a test setup that mimics surgical conditions. For both compartments, the highest loads are observed in full extension. While creating knee flexion by lifting the femur and flexing the hip, mean values (standard deviation) of 114 N (71 N) and 63 N (28 N) are observed at 0° flexion for the medial and lateral compartment respectively. Upon flexion, both medial and lateral loads decrease with mean values at 90° flexion of 30 N (22 N) and 6 N (5 N) respectively. The majority of the load is transmitted through the medial compartment. These observations are linked to the deformation of the medial and lateral collaterals, in addition to the anatomy of the passive soft tissues surrounding the knee. In conclusion, these findings provide tangible clinical guidance in assessing the soft tissue loads when dealing with anatomically designed total knee implants.  相似文献   

10.
《Small Ruminant Research》2009,82(2-3):112-118
Eight castrated male lambs (35 ± 4 kg live weight), fed a basal diet of kikuyu grass hay, were used in a replicated 4 × 4 Latin Square experiment with a 2 × 2 factorial arrangement of treatments to evaluate the effect of supplemental feeding frequency and source of rumen degradable N on intake, digestibility, ruminal fermentation, and microbial protein yield. Treatments were supplementation with cassava meal plus calcium caseinate or cassava meal plus urea offered at a rate of 7 g/kg live weight daily in one or two meals per day. Lambs were fed twice daily in such manner to allow ad libitum comsumption of forage. There was significant feeding frequency by N source interaction on variables of intake. In general, intake of feed components was higher (P  0.05) by lambs offered the caseinate-supplement twice daily over intake observed in lambs given the others diet treatments. Digestibility of feed components was neither affected by supplemental N source (DM, P = 0.541; OM, P = 0.585; NDF, P = 0.828) nor by feeding frequency (DM, P = 0.122; OM, P = 0.175; NDF, P = 0.591). Urinary excretion of N increased (P  0.05) in lambs supplemented twice daily whereas N retention was similar for all treatments (N source, P = 0.748; feeding frequency, P = 0.418). Microbial protein entering into the small intestine was affected by the interaction between feeding frequency and N source such as an increasing (P < 0.10) in this variable was observed when lambs received the caseinate but not the urea supplement twice daily. Efficiency of microbial protein synthesis, however, was not affected by treatments (N source, P = 0.588; feeding frequency, P = 0.334). Rumen pH averaged 6.70 and it was neither affected by N source (P = 0.827) nor by feeding frequency (P = 0.740). Ruminal concentration of ammonia N was not affected by feeding frequency (P = 0.144) while it increased (P < 0.05) when urea rather than caseinate was the supplemental N source (mean of 7.61 mg/dl vs. 6.00 mg/dl). Concentration of sugars in rumen fluid was higher (P  0.05) in lambs supplemented once a day compared to twice daily (mean of 49.4 mg/dl vs. 34.4 mg/dl) for both N sources. A significant (P  0.05) N source by feeding frequency interaction effect was observed for ruminal concentrations of α-amino N compounds. In urea treatment α-amino N concentration increased (P  0.05) in lambs receiving the supplement twice daily compared to once a day (mean of 4.59 mg/dl vs. 3.70 mg/dl) while in caseinate treatment it was higher (P  0.05) in lambs offered the supplement in one meal per day compared to twice daily (mean of 5.29 mg/dl vs. 4.07 mg/dl). In conclusion, for ruminants fed a tropical grass-based diet, starch-rich supplement containing non-protein N as N source may be offered only once a day whereas the supply of nutrients may be improved if degradable true protein is included as N source and supplement is offered in two meals per day.  相似文献   

11.
The use of surface electromyography (SEMG) in vibration studies is problematic since motion artifacts occupy the same frequency band with the SEMG signal containing information on synchronous motor unit activity. We hypothesize that using a harsher, 80–500 Hz band-pass filter and using rectification can help eliminate motion artifacts and provide a way to observe synchronous motor unit activity that is phase locked to vibration using SEMG recordings only. Multi Motor Unit (MMU) action potentials using intramuscular electrodes along with SEMG were recorded from the gastrocnemius medialis (GM) of six healthy male volunteers. Data were collected during whole body vibration, using vibration frequencies of 30 Hz, 35 Hz, 40 Hz or 50 Hz. A computer simulation was used to investigate the efficacy of filtering under different scenarios: with or without artifacts and/or motor unit synchronization. Our findings indicate that motor unit synchronization took place during WBV as verified by MMU recordings. A harsh filtering regimen along with rectification proved successful in demonstrating motor unit synchronization in SEMG recordings. Our findings were further supported by the results from the computer simulation, which indicated that filtering and rectification was efficient in discriminating motion artifacts from motor unit synchronization. We suggest that the proposed signal processing technique may provide a new methodology to evaluate the effects of vibration treatments using only SEMG. This is a major advantage, as this non-intrusive method is able to overcome movement artifacts and also indicate the synchronization of underlying motor units.  相似文献   

12.
The purpose of this paper is to evaluate the muscular activation of the forearm, with or without vibration stimuli at different frequencies while performing a grip tasks of 45 s at various level of exerted force. In 16 individuals, 9 females and 7 males, the surface electromyogram (EMG) of extensor carpi radialis longus and the flexor carpi ulnari muscles were assessed. At a short latency from onset EMG, RMS and the level of MU synchronization were assessed to evaluate the muscular adaptations. Whilst a trend of decay of EMG Median frequency (MDFd) was employed as an index of muscular fatigue. Muscular tasks consists of the grip of an instrumented handle at a force level of 20%, 30%, 40%, 60% of the maximum voluntary force. Vibration was supplied by a shaker to the hand in mono-frequential waves at 20, 30, 33 and 40 Hz. In relation to EMG, RMS and MU synchronization, the muscular activation does not seem to change with the superimposition of the mechanical vibrations, on the contrary a lower MDFd was observed at 33 Hz than in absence of vibration. This suggests an early muscular fatigue induced by vibration due to the fact that 33 Hz is a resonance frequency for the hand-arm system.  相似文献   

13.
Whole body vibration (WBV) during exercise offers potential to augment the effects of basic exercises. However, to date there is limited information on the basic physiological and biomechanical effects of WBV on skeletal muscles. The aim of this study was to determine the effects of WBV (40 Hz, 1.9 mm synchronous vertical displacement) on the myoelectrical activity of selected plantarflexors during heel raise exercise. 3D motion capture of the ankle, synchronised with sEMG of the lateral gastrocnemius and soleus, was obtained during repetitive heel raises carried out at 0.5 Hz on 10 healthy male subjects (age 27 ± 5 years, height 1.78 ± 0.04 m, weight 75.75 ± 11.9 kg). During both vibration and non vibration the soleus activation peaked earlier than that of the lateral gastrocnemius. The results indicate that WBV has no effect on the timing of exercise completion or the amplitude of the lateral gastrocnemius activity, however significant increases in amplitudes of the soleus muscle activity (77.5–90.4% MVC P < 0.05). WBV had no significant effect on median frequencies of either muscle. The results indicate that the greatest effect of WBV during heel raise activity is in the soleus muscles during the early phases of heel raise.  相似文献   

14.
The time–frequency analysis of the tennis racket and hand vibrations is of great interest for discomfort and pathology prevention. This study aimed to (i) to assess the stationarity of the vibratory signal of the racket and hand and (ii) to identify the best mother wavelet to perform future time–frequency analysis, (iii) to determine if the stroke spin, racket characteristics and impact zone can influence the selection of the best mother wavelet. A total of 2364 topspin and flat forehand drives were performed by fourteen male competitive tennis players with six different rackets. One tri-axial and one mono-axial accelerometer were taped on the racket throat and dominant hand respectively. The signal stationarity was tested through the wavelet spectrum test. Eighty-nine mother wavelet were tested to select the best mother wavelet based on continuous and discrete transforms. On average only 25 ± 17%, 2 ± 5%, 5 ± 7% and 27 ± 27% of the signal tested respected the hypothesis of stationarity for the three axes of the racket and the hand respectively. Regarding the two methods for the detection of the best mother wavelet, the Daubechy 45 wavelet presented the highest average ranking. No effect of the stroke spin, racket characteristics and impact zone was observed for the selection of the best mother wavelet. It was concluded that alternative approach to Fast Fourier Transform should be used to interpret tennis vibration signals. In the case where wavelet transform is chosen, the Daubechy 45 mother wavelet appeared to be the most suitable.  相似文献   

15.
The purpose of the present study was to determine how humans adjust leg stiffness over a range of hopping frequencies. Ten male subjects performed in place hopping on two legs, at three frequencies (1.5, 2.2, and 3.0 Hz). Leg stiffness, joint stiffness and touchdown joint angles were calculated from kinetic and/or kinematics data. Electromyographic activity (EMG) was recorded from six leg muscles. Leg stiffness increased with an increase in hopping frequency. Hip and knee stiffnesses were significantly greater at 3.0 Hz than at 1.5 Hz. There was no significant difference in ankle stiffness among the three hopping frequencies. Although there were significant differences in EMG activity among the three hopping frequencies, the largest was the 1.5 Hz, followed by the 2.2 Hz and then 3.0 Hz. The subjects landed with a straighter leg (both hip and knee were extended more) with increased hopping frequency. These results suggest that over the range of hopping frequencies we evaluated, humans adjust leg stiffness by altering hip and knee stiffness. This is accomplished by extending the touchdown joint angles rather than by altering neural activity.  相似文献   

16.
When Acremonium sp. IMI 383068 was grown under chemostat conditions with scleroglucan as sole carbon source, the fungus produced four (1  3)-β-glucanases and a single (1  6)-β-glucanase. Production of the (1  3)-β-glucanase was growth rate related while the (1  6)-β-glucanase was growth rate unrelated. Specific activities of both were affected by increasing agitation speed, independently of dissolved oxygen tension (DOT) or growth rates, falling at the higher speeds examined. They also increased as DOT levels increased. No evidence was obtained to substantiate any relationship between enzyme specific activities and hyphal branching frequencies.  相似文献   

17.
Contemporary methods of atrial flutter (AFL), atrial tachycardia (AT), and atrial fibrillation (AF) monitoring, although superior to the standard 12-lead ECG and symptom-based monitoring, are unable to accurately discriminate between AF, AFL and AT. Thus, there is a need to develop accurate, automated, and comprehensive atrial arrhythmia detection algorithms using standard ECG recorders. To this end, we have developed a sensitive and real-time realizable algorithm for accurate AFL and AT detection using any standard electrocardiographic recording. Our novel method for automatic detection of atrial flutter and atrial tachycardia uses a Bayesian approach followed by a high resolution time–frequency spectrum. We find the TQ interval of the electrocardiogram (ECG) corresponding to atrial activity by using a particle filter (PF), and analyze the atrial activity with a high resolution time–frequency spectral method: variable frequency complex demodulation (VFCDM). The rationale for using a high-resolution time–frequency algorithm is that our approach tracks the time-varying fundamental frequency of atrial activity, where AT is within 2.0–4.0 Hz, AFL is within 4.0–5.3 Hz and NSR is found at frequencies less than 2.0 Hz. For classifications of AFL (n = 22), AT (n = 10) and normal sinus rhythms (NSR) (n = 29), we found that our approach resulted in accuracies of 0.89, 0.87 and 0.91, respectively; the overall accuracy was 0.88.  相似文献   

18.
Implant diameter and length are the most effective parameters affecting stress distribution in surrounding bones. In order to extract simplified design equations to better understand implants behavior, 25 different implant designs with gradual increase in diameter and length were analyzed in 3D using Finite Element Method. Four types of loadings were applied on each design: tension of 50 N, compression of 100 N, bending of 20 N, and torque of 2 Nm to derive design curves.Analysis of results showed that increasing implant diameter and length generate better stress distribution on spongy and cortical bones. Approximate design equations and curves were obtained as a result of this study.  相似文献   

19.
《Zoology (Jena, Germany)》2015,118(5):320-324
Crocodiles show oriented responses to water surface wave stimuli but up to now behavioral thresholds are missing. This study determines the behavioral thresholds of crocodilians to water surface waves. Nile crocodiles (Crocodylus niloticus) were conditioned to respond to single-frequency water surface wave stimuli (duration 1150 ms, frequency 15, 30, 40, 60 and 80 Hz), produced by blowing air onto the water surface. Our study shows that C. niloticus is highly sensitive to capillary water surface waves. Threshold values decreased with increasing frequency and ranged between 10.3 μm (15 Hz) and 0.5 μm (80 Hz) peak-to-peak wave amplitude. For the frequencies 15 Hz and 30 Hz the sensitivity of one spectacled caiman (Caiman crocodilus) to water surface waves was also tested. Threshold values were 12.8 μm (15 Hz) down to 1.76 μm (30 Hz), i.e. close to the threshold values of C. niloticus. The surface wave sensitivity of crocodiles is similar to the surface wave sensitivity of semi-aquatic insects and fishing spiders but does not match the sensitivity of surface-feeding fishes which is higher by one to two orders of magnitude.  相似文献   

20.
The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i × j) and three-factor (i k × j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1 × i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1–i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1 × i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1 × i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII+ recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss-branch migration step of the DSB repair pathway and partially deficient in HJ initiation. In apparent contradiction to their effects on the DSB-induced site-specific recombination, the topoisomerase and primase mutants demonstrated about 3–8-fold increase in the recombinant frequencies in the ordinary crosses, with the recombination running exclusively via patches. This implies that most of the spontaneous recombination events are not initiated by dsDNA ends in these mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号