首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32–65% lower in the OI group (p < 0.001). Yield strain did not differ between groups (p  0.197). In both groups, modulus and strength were lower in the transverse direction (p  0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p < 0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p = 0.086). Volumetric bone mineral density was lower in the OI group (p < 0.001), but volumetric tissue mineral density was not (p = 0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p  0.024) but not volumetric tissue mineral density (p  0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI.  相似文献   

2.
The morphology of viable taste disks of the frog was explored with multi-photon microscopy. In order to identify single sensory or supporting cells within the tissue, we searched for fluorescent dyes that stained subsets of the cell population or possibly cell types. Some cell types indeed stained preferentially with certain fluorescent dyes. A subset of glia-like cells (type Ic) stained with BCECF, a H+-sensitive dye, and indo-1, a Ca2+-sensitive dye, both presented in the membrane-permeant ester form. BCECF-ester also stained the dendrites of type III receptor cells, but indo-1 ester did not. Receptor cells of type II stained with MQAE, a positively charged Cl-sensitive dye. A subset of type II cells accumulated amiloride, a positively charged fluorescent diuretic. Certain supporting cells, i.e., wing cells (type Ib) and glia-like cells (type Ic), were labeled by negatively charged dyes, e.g., calcium green-1 dextran. Mucus cells (type Ia) were stained with only two of the 19 dyes examined, and Merkel-like basal cells (type IV) were stained only with a membrane-labeling voltage-sensitive dye, presumably by endocytosis. No dye was found which would stain all types of cells or all receptor cells. This finding reveals a potential problem for future functional imaging aiming at population responses, as the responses of unstained cells then would remain unobserved. Specificity of dyes with respect to cell types was sufficient to identify supporting cells and receptor cells. Cell shape could then be reconstructed, using optical slicing and rendering techniques. Thus populations of dye-loaded elongated cells, especially types Ic, II and III, could for the first time be visualized in three dimensions.This work was supported by the Deutsche Forschungsgemeinschaft (SFB 530, project B2)  相似文献   

3.
We compared sensitivity and selectivity of five dyes for detection of 2D PAGE-resolved proteins derived from Escherichia coli and MDCK cells. The sensitivity of these dyes was in the following order: SYPRO Ruby > Deep Purple > CBB-G250 > CBB-R250 > Colloidal Gold. Also, we report herein for the first time the application of Colloidal Gold (which is commonly used for staining proteins on blotted membranes) for in-gel staining of proteins. For E. coli, most of the dyes preferably detected proteins with pI range of 4.0–6.9, whereas Deep Purple preferably detected proteins with less acidic range (pI 5.0–7.9). For MDCK cells, while other dyes preferably stained proteins at pI range of 5.0–7.9, Colloidal Gold preferably stained more basic proteins (pI 7.0–9.9). This preferential staining property of Colloidal Gold to basic proteins was confirmed in SDS-PAGE-separated lysozyme (pI 9.4), compared to calmodulin (pI 4.0) and albumin (pI 6.0). These data provide useful information to select appropriate dyes for gel-based proteomic analysis of individual samples.  相似文献   

4.
Failure of bone under monotonic and cyclic loading is related to the bone mineral density, the quality of the bone matrix, and the evolution of microcracks. The theory of linear elastic fracture mechanics has commonly been applied to describe fracture in bone. Evidence is presented that bone failure can be described through a non-linear theory of fracture. Thereby, deterministic size effects are introduced. Concepts of a non-linear theory are applied to discern how the interaction among bone matrix constituents (collagen and mineral), microcrack characteristics, and trabecular architecture can create distinctively differences in the fracture resistance at the bone tissue level. The non-linear model is applied to interpret pre-clinical data concerning the effects of anti-osteoporotic agents on bone properties. The results show that bisphosphonate (BP) treatments that suppress bone remodeling will change trabecular bone in ways such that the size of the failure process zone relative to the trabecular thickness is reduced. Selective estrogen receptor modulators (SERMs) that suppress bone remodeling will change trabecular bone in ways such that the size of the failure process zone relative to the trabecular thickness is increased. The consequences of these changes are reflected in bone mechanical response and predictions are consistent with experimental observations in the animal model which show that BP treatment is associated with more brittle fracture and microcracks without altering the average length of the cracks, whereas SERM treatments lead to a more ductile fracture and mainly increase crack length with a smaller increase in microcrack density. The model suggests that BPs may be more effective in cases in which bone mass is very low, whereas SERMS may be more effective when milder osteoporotic symptoms are present.  相似文献   

5.
A bacterial strain, CK3, with remarkable ability to decolorize the reactive textile dye Reactive Red 180, was isolated from the activated sludge collected from a textile mill. Phenotypic characterization and phylogenetic analysis of the 16S rDNA sequence indicated that the bacterial strain belonged to the genus Citrobacter. Bacterial isolate CK3 showed a strong ability to decolorize various reactive textile dyes, including both azo and anthraquinone dyes. Anaerobic conditions with 4 g l?1 glucose, pH = 7.0 and 32 °C were considered to be the optimum decolorizing conditions. Citrobacter sp. CK3 grew well in a high concentration of dye (200 mg l?1), resulting in approximately 95% decolorization extent in 36 h, and could tolerate up to 1000 mg l?1 of dye. UV–vis analyses and colorless bacterial cells suggested that Citrobacter sp. CK3 exhibited decolorizing activity through biodegradation, rather than inactive surface adsorption. It is the first time that a bacterial strain of Citrobacter sp. has been reported with decolorizing ability against both azo and anthraquinone dyes. High decolorization extent and facile conditions show the potential for this bacterial strain to be used in the biological treatment of dyeing mill effluents.  相似文献   

6.
Exposure to intense, nanosecond-duration electric pulses (nsEP) opens small but long-lived pores in the plasma membrane. We quantified the cell uptake of two membrane integrity marker dyes, YO-PRO-1 (YP) and propidium (Pr) in order to test whether the pore size is affected by the number of nsEP. The fluorescence of the dyes was calibrated against their concentrations by confocal imaging of stained homogenates of the cells. The calibrations revealed a two-phase dependence of Pr emission on the concentration (with a slower rise at < 4 μM) and a linear dependence for YP. CHO cells were exposed to nsEP trains (1 to 100 pulses, 60 ns, 13.2 kV/cm, 10 Hz) with Pr and YP in the medium, and the uptake of the dyes was monitored by time-lapse imaging for 3 min. Even a single nsEP triggered a modest but detectable entry of both dyes, which increased linearly when more pulses were applied. The influx of Pr per pulse was constant and independent of the pulse number. The influx of YP per pulse was highest with 1- and 2-pulse exposures, decreasing to about twice the Pr level for trains from 5 to 100 pulses. The constant YP/Pr influx ratio for trains of 5 to 100 pulses suggests that increasing the number of pulses permeabilizes cells to a greater extent by increasing the pore number and not the pore diameter.  相似文献   

7.
Primary stability of uncemented resurfacing prosthesis is provided by an interference fit between the undersized implant and the reamed bone. Dependent on the magnitude of interference, the implantation process causes high shear forces and large strains which can exceed the elastic limit of cancellous bone. Plastification of the bone causes reduced stiffness and could lead to bone damage and implant loosening. The purpose in this study was to determine press-fit conditions which allow implantation without excessive plastic bone deformation and sufficient primary stability to achieve bone ingrowth. In particular, the influence of interference, bone quality and friction on the micromotion during walking and stair-climbing was investigated. Therefore elastic and plastic finite element (FE) models of the proximal femur were developed. Implantation was realized by displacing the prosthesis onto the femur while monitoring the contact pressure, plastic bone deformation as well as implantation forces. Subsequently a physiologic gait and stair-climbing cycle was simulated calculating the micromotion at the bone-implant interface. Results indicate that plastic deformation starts at an interference of 30 μm and the amount of plastified bone at the interface increases up to 90% at 150 μm interference. This effect did not reduce the contact pressure if interference was below 80 μm. The micromotion during walking was similar for the elastic and plastic FE models. A stable situation allowing bony ingrowth was achieved for both constitutive laws (elastic, plastic) for walking and stair climbing with at least 60 μm press-fit, which is feasible with clinically used implantation forces of 4 kN.  相似文献   

8.
The grafting of l-phenylalanine onto low molecular weight chitosan is accomplished by using carbodiimide as a coupling agent. As increase in the amount of phenylalanine in feed, the grafting chain length increases, while a number of grafting chains hardly change. The obtained product, LMWCts-g-Phe, performs sphere with an average size of ~80 nm when the % grafting is less than 123. The complexes of the LMWCts-g-Phe and DNA (LMWCts-g-Phe/DNA) prepared by a complex coacervation method possess various shapes with an average size of ~50–150 nm and a negatively charged surface. The LMWCts-g-Phe and its complex show very reduced toxicity to fibroblast cells. The release of DNA from the complex is very fast in high pH media (tris buffer, pH 8.0 and carbonate buffer, pH 9.5), and relatively slow or more sustainable in neutral and low pH ones (PBS, pH 7.4 and citric acid/trisodium citrate buffer, pH 3.0). The results suggest that the LMWCts-g-Phe be an alternative promising carrier for negatively charged active molecules.  相似文献   

9.
Longitudinal bone growth in children/adolescents occurs through endochondral ossification at growth plates and is influenced by mechanical loading, where increased compression decreases growth (i.e., Hueter-Volkmann Law). Past in vivo studies on static vs dynamic compression of growth plates indicate that factors modulating growth rate might lie at the cellular level. Here, in situ viscoelastic deformation of hypertrophic chondrocytes in growth plate explants undergoing stress-controlled static vs dynamic loading conditions was investigated. Growth plate explants from the proximal tibia of pre-pubertal rats were subjected to static vs dynamic stress-controlled mechanical tests. Stained hypertrophic chondrocytes were tracked before and after mechanical testing with a confocal microscope to derive volumetric, axial and lateral cellular strains. Axial strain in hypertrophic chondrocytes was similar for all groups, supporting the mean applied compressive stress’s correlation with bone growth rate and hypertrophic chondrocyte height in past studies. However, static conditions resulted in significantly higher lateral (p < 0.001) and volumetric cellular strains (p  0.015) than dynamic conditions, presumably due to the growth plate’s viscoelastic nature. Sustained compression in stress-controlled static loading results in continued time-dependent cellular deformation; conversely, dynamic groups have less volumetric strain because the cyclically varying stress limits time-dependent deformation. Furthermore, high frequency dynamic tests showed significantly lower volumetric strain (p = 0.002) than low frequency conditions. Mechanical loading protocols could be translated into treatments to correct or halt progression of bone deformities in children/adolescents. Mimicking physiological stress-controlled dynamic conditions may have beneficial effects at the cellular level as dynamic tests are associated with limited lateral and volumetric cellular deformation.  相似文献   

10.
The aim of this work was to estimate the body mass index (BMI) at which risk of hypertension is lowest in men and women, while concurrently considering the protective role of adipose tissue in osteoporosis. Healthy, occupationally active inhabitants of the city of Wroc?aw, Poland, 1218 women and 434 men were studied. BMI, systolic and diastolic blood pressures, bone mineral density (BMD) of the trabecular compartment and distal radius of the non-dominant hand were recorded. Overweight in young women (≤45 years) was associated with increased risk of hypertension, whereas the risk of low bone mineral was decreased for the same BMI. In older women (>45 years), a BMI > 27 was the threshold for increased risk of hypertension. In this age group, extremely slim women (BMI < 21) had the highest risk of low bone mineral density. In younger males (≤45 years), risk of hypertension was lowest among the thinnest subjects (BMI < 21). Increase in BMI over 21 kg/m2 increased the risk of hypertension. The probability of low bone mineral density was the same in all BMI categories of men. In older men (>45 years), the thinnest (BMI < 21) had higher risk of hypertension. To begin from BMI = 25 kg/m2, there was a monotonous increase in risk of hypertension in men. Higher risk for low bone mineral density was observed in older men with the BMI < 23.Among younger adults, risk of hypertension and low bone mineral density increase at BMI  21 kg/m2 in men and BMI  23 kg/m2 in women. Among older men and women, the BMI threshold was 27 kg/m2.  相似文献   

11.
The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.  相似文献   

12.
Traditionally, cartilage is stained by alcian blue using acidic conditions to differentiate tissue staining. The acidic conditions are problematic when one wishes to stain the same specimen for mineralized bone with alizarin red, because acid demineralizes bone, which negatively affects bone staining. We have developed an acid-free method to stain cartilage and bone simultaneously in zebrafish larvae. This method has the additional advantage that PCR genotyping of stained specimens is possible.  相似文献   

13.
A new VOF Type III-G.S stain was applied to histological sections of different organs and tissues of healthy and pathological larvae, juvenile and adult fish species (Solea senegalensis; Sparus aurata; Diplodus sargo; Pagrus auriga; Argyrosomus regius and Halobatrachus didactylus). In comparison to the original Gutiérrez VOF stain, more acid dyes of contrasting colours and polychromatic/metachromatic properties were incorporated as essential constituents of the tetrachromic VOF stain. This facilitates the selective staining of different basic tissues and improves the morphological analysis of histochemical approaches of the cell components. The VOF Type III -6.5 stain is composed of a mixture of several dyes of varying size and molecular weight (Orange G相似文献   

14.
This study aimed to elucidate the role of charge in mediating chondrocyte response to loading by employing synthetic 3D hydrogels. Specifically, neutral poly(ethylene glycol) (PEG) hydrogels were employed where negatively charged chondroitin sulfate (ChS), one of the main extracellular matrix components of cartilage, was systematically incorporated into the PEG network at 0%, 20% or 40% to control the fixed charge density. PEG hydrogels were employed as a control environment for extracellular events which occur as a result of loading, but which are not associated with a charged matrix (e.g., cell deformation and fluid flow). Freshly isolated bovine articular chondrocytes were embedded in the hydrogels and subject to dynamic mechanical stimulation (0.3 Hz, 15% amplitude strains, 6 h) and assayed for nitric oxide production, cell proliferation, proteoglycan synthesis, and collagen deposition. In the absence of loading, incorporation of charge inhibited cell proliferation by ~ 75%, proteoglycan synthesis by ~ 22–50% depending on ChS content, but had no affect on collagen deposition. Dynamic loading had no effect on cellular responses in PEG hydrogels. However, dynamically loading 20% ChS gels inhibited nitrite production by 50%, cell proliferation by 40%, but stimulated proteoglycan and collagen deposition by 162% and 565%, respectively. Dynamic loading of 40% ChS hydrogels stimulated nitrite production by 62% and proteoglycan synthesis by 123%, but inhibited cell proliferation by 54% and collagen deposition by 52%. Upon removing the load and culturing under free-swelling conditions for 36 h, the enhanced matrix synthesis observed in the 20% ChS gels was not maintained suggesting that loading is necessary to stimulate matrix production. In conclusion, extracellular events associated with a charged matrix have a dramatic affect on how chondrocytes respond to mechanical stimulation within these artificial 3D matrices suggesting that streaming potentials and/or dynamic changes in osmolarity may be important regulators of chondrocytes while cell deformation and fluid flow appear to have less of an effect.  相似文献   

15.
BackgroundOsteoporosis is characterised by loss of bone mass and deterioration of bone tissue microarchitecture that leads to fragility related to the risk of fractures. The aim of the study is to analyse the effects of a training program based on explosive movements and impact, assessed in a swimming pool, on body composition, explosive strength and bone mineral density in women over 60 years old.Material and methodsA total of 35 healthy physically active women (60 ± 4.19 years) were divided into a training pool group using multi jumps (JG) and a control group (CG). JG trained for 24 weeks, 3 times a week, an hour and a half per session. Body composition testing, explosive strength, and bone mineral density were assessed before and after the program.ResultsThere were differences in the explosive force (JG vs CG = P < .05 to .001) and the estimated power (JG vs CG = P < .05 to .002) between JG vs CG, with significant increases in JG. There were no significant differences in the percentage of fat and lean mass, bone mineral density lumbar and femoral between groups, although slightly significant increases in bone mineral density lumbar and femoral could be seen in JG after program implementation (JG pre-test vs JG post- test = P < .05).ConclusionsThe training program with impact and explosive movements assessed in a pool induces gains in muscle strength and power with slight adaptations in body mass index in women over 60 years.  相似文献   

16.
Using the xanthene dye C.I. acid red 52 (CI. 45100) as a single agent stain applied to coverslip preparations of blood and bone marrow, primary and secondary granules in cells of neutrophilic origin stained brilliant pink. In eosinophils, granules stained dark red. In leukemic myeloblasts that also stained with Sudan black B and demonstrated myeloperoxidase and specific esterase activity, a few bright red staining granules were visualized with acid red 52- In some leukemic promyelocytes, Auer rods stained bright red. In leukemic lymphoblasts, no red granules were seen. Of a wide variety of dyes tested so far, acid red 52 is the most sensitive stain for primary and secondary granules of granulocytes in blood and bone marrow.  相似文献   

17.
L Kass 《Stain technology》1987,62(2):77-84
Using the xanthene dye C.I. acid red 52 (C.I. 45100) as a single agent stain applied to coverslip preparations of blood and bone marrow, primary and secondary granules in cells of neutrophilic origin stained brilliant pink. In eosinophils, granules stained dark red. In leukemic myeloblasts that also stained with Sudan black B and demonstrated myeloperoxidase and specific esterase activity, a few bright red staining granules were visualized with acid red 52. In some leukemic promyelocytes, Auer rods stained bright red. In leukemic lymphoblasts, no red granules were seen. Of a wide variety of dyes tested so far, acid red 52 is the most sensitive stain for primary and secondary granules of granulocytes in blood and bone marrow.  相似文献   

18.
In this research, micro and nanoparticles of Spirulina platensis dead biomass were obtained, characterized and employed to removal FD&C red no. 40 and acid blue 9 synthetic dyes from aqueous solutions. The effects of particle size (micro and nano) and biosorbent dosage (from 50 to 750 mg) were studied. Pseudo-first order, pseudo-second order and Elovich models were used to evaluate the biosorption kinetics. The biosorption nature was verified using energy dispersive X-ray spectroscopy (EDS). The best results for both dyes were found using 250 mg of nanoparticles, in these conditions, the biosorption capacities were 295 mg g?1 and 1450 mg g?1, and the percentages of dye removal were 15.0 and 72.5% for the FD&C red no. 40 and acid blue 9, respectively. Pseudo-first order model was the more adequate to represent the biosorption of both dyes onto microparticles, and Elovich model was more appropriate to the biosorption onto nanoparticles. The EDS results suggested that the dyes biosorption onto microparticles occurred mainly by physical interactions, and for the nanoparticles, chemisorption was dominant.  相似文献   

19.
Intramedullary pressure (ImP) and low-level bone strain induced by oscillatory muscle stimulation (MS) has the potential to mitigate bone loss induced by disuse osteopenia, i.e., hindlimb suspension (HLS). To test this hypothesis, we evaluated (a) MS-induced ImP and bone strain as function of stimulation frequency and (b) the adaptive responses to functional disuse, and disuse plus 1 and 20 Hz stimulation in vivo. Femoral ImP and bone strain generated by MS were measured in the frequencies of 1–100 Hz in four rats. Forty retired breeder rats were used for the in vivo HLS study. The quadriceps muscle was stimulated at frequencies of 1 and 20 Hz, 10 min/d for four weeks. The metaphyseal trabecular bone quantity and microstructure at the distal femur were evaluated using μCT, while bone formation indices were analyzed using histomorphometric technique. Oscillatory MS generated a maximum ImP of 45±9 mmHg at 20 Hz and produced a maximum matrix strain of 128±19 με at 10 Hz. Our analyses from the in vivo study showed that MS at 20 Hz was able to attenuate trabecular bone loss and partially maintain the microstructure induced by HLS. Conversely, there was no evidence of an adaptive effect of stimulation at 1 Hz on disused skeleton. The results suggested that oscillatory MS regulates fluid dynamics and mechanical strain in bone, which serves as a critical mediator of adaptation. These results clearly demonstrated the ability of MS in attenuating bone loss from the disuse osteopenia, which may hold potential in mitigating skeletal degradation imposed by conditions of disuse, and may serve as a biomechanical intervention in clinic application.  相似文献   

20.
Human-β-defensins HBD-1–3 are important components of the innate immune system. Synthetic peptides Phd-1–3 with a single disulphide bond, spanning the cationic C-terminal region of HBD-1–3, have antimicrobial activity. The interaction of Phd-1–3 with model membranes was investigated using isothermal titration calorimetry (ITC) and steady-state fluorescence polarization to understand the biophysical basis for the mechanism of antimicrobial action. Calorimetric titration of POPE:POPG (7:3) vesicles with peptides at 25 °C and 37 °C showed complex profiles with two distinct regions of heat changes. The data indicate binding of Phd-1–3 at 37 °C to both negative and zwitterionic lipid vesicles is exothermic with low enthalpy values (ΔH ~ ? 1.3 to ? 2.8 kcal/mol) as compared to amphipathic helical antibacterial peptides. The adsorption of peptides to negatively charged lipid membranes is modulated by electrostatic interactions that are described by surface partition equilibrium model using Gouy–Chapman theory. However, this model could not explain the isotherms of peptide binding to zwitterionic lipid vesicles. Fluorescence polarization of TMA-DPH (1-[4-(trimethylammonio) phenyl]-6-phenyl-1,3,5-hexatriene) and DPH (1,6-diphenyl-1,3,5-hexatriene) located in the head group and acyl chain region respectively, indicates that the peptides interact with interfacial region of negatively charged membranes. Based on the results obtained, we conclude that adsorption of cationic peptides Phd-1–3 on lipid surface do not result in conformational change or pore formation. It is proposed that interaction of Phd-1–3 with the negatively charged lipid head group causes membrane destabilization, which in turn affects the efficient functioning of cytoplasmic membrane proteins in bacteria, resulting in cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号