首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stress distribution within the polyethylene insert of a total knee joint replacement is dependent on the kinematics, which in turn are dependent on the design of the articulating surfaces, the relative position of the components and the tension of the surrounding soft tissues. Implicit finite element analysis techniques have been used previously to examine the polyethylene stresses. However, these have essentially been static analyses and hence ignored the influence of the kinematics. The aim of this work was to use an explicit finite element approach to simulate both the kinematics and the internal stresses within a single analysis. A simulation of a total knee joint replacement subjected to a single gait cycle within a knee wear simulator was performed and the results were compared with experimental data.The predicted kinematics were in close agreement with the experimental data. Various solution-dependent parameters were found to have little influence on the predicted kinematics. The predicted stresses were found to be dependent on the mesh density. This study has shown that an explicit finite element approach is capable of predicting the kinematics and the stresses within a single analysis at relatively low computational cost.  相似文献   

2.
For clinically predictive testing and design-phase evaluation of prospective total knee replacement (TKR) implants, devices should ideally be evaluated under physiological loading conditions which incorporate population-level variability. A challenge exists for experimental and computational researchers in determining appropriate loading conditions for wear and kinematic knee simulators which reflect in vivo joint loading conditions. There is a great deal of kinematic data available from fluoroscopy studies. The purpose of this work was to develop computational methods to derive anterior–posterior (A–P) and internal–external (I–E) tibiofemoral (TF) joint loading conditions from in vivo kinematic data. Two computational models were developed, a simple TF model, and a more complex lower limb model. These models were driven through external loads applied to the tibia and femur in the TF model, and applied to the hip, ankle and muscles in the lower limb model. A custom feedback controller was integrated with the finite element environment and used to determine the external loads required to reproduce target kinematics at the TF joint. The computational platform was evaluated using in vivo kinematic data from four fluoroscopy patients, and reproduced in vivo A–P and I–E motions and compressive force with a root-mean-square (RMS) accuracy of less than 1 mm, 0.1°, and 40 N in the TF model and in vivo A–P and I–E motions, TF flexion, and compressive loads with a RMS accuracy of less than 1 mm, 0.1°, 1.4°, and 48 N in the lower limb model. The external loading conditions derived from these models can ultimately be used to establish population variability in loading conditions, for eventual use in computational as well as experimental activity simulations.  相似文献   

3.
As one of the alternatives to traditional metal-on-polyethylene total hip replacements, metal-on-metal hip resurfacing prostheses demonstrating lower wear have been introduced for younger and more active patients during the past decade. However, in vitro hip simulator testing for the predicted increased lifetime of these surface replacements is time-consuming and costly. Computational wear modelling based on the Archard wear equation and finite element contact analysis was developed in this study for artificial hip joints and particularly applied to metal-on-metal resurfacing bearings under simulator testing conditions to address this issue. Wear factors associated with the Archard wear equation were experimentally determined and based on the short-term hip simulator wear results. The computational wear simulation was further extended to a long-term evaluation up to 50 million cycles assuming that the wear rate stays constant. The prediction from the computational model shows good agreement with the corresponding simulator study in terms of volumetric wear and the wear geometry. The simulation shows the progression of linear wear penetrations, and the complexity of contact stress distribution on the worn bearing surfaces. After 50 million cycles, the maximum linear wear was predicted to be approximately 6 and 8 microm for the cup and head, respectively, and no edge contact was found.  相似文献   

4.
Experimental simulator studies are frequently performed to evaluate wear behavior in total knee replacement. It is vital that the simulation conditions match the physiological situation as closely as possible. To date, few experimental wear studies have examined the effects of joint laxity on wear and joint kinematics and the absence of the anterior cruciate ligament has not been sufficiently taken into account in simulator wear studies.The aim of this study was to investigate different ligament and soft tissue models with respect to wear and kinematics.A virtual soft tissue control system was used to simulate different motion restraints in a force-controlled knee wear simulator.The application of more realistic and sophisticated ligament models that considered the absence of anterior cruciate ligament lead to a significant increase in polyethylene wear (p=0.02) and joint kinematics (p<0.01). We recommend the use of more complex ligament models to appropriately simulate the function of the human knee joint and to evaluate the wear behavior of total knee replacements. A feasible simulation model is presented.  相似文献   

5.
Damage to the femoral head in total hip arthroplasty often takes the form of discrete scratches, which can lead to dramatic wear acceleration of the polyethylene (PE) liner. Here, a novel formulation is reported for finite element (FE) analysis of wear acceleration due to scratch damage. A diffused-light photography technique was used to globally locate areas of damage, providing guidance for usage of high-magnification optical profilometry to determine individual scratch morphology. This multiscale image combination allowed comprehensive input of scratch-based damage patterns to an FE Archard wear model, to determine the wear acceleration associated with specific retrieval femoral heads. The wear algorithm imposed correspondingly elevated wear factors on areas of PE incrementally overpassed by individual scratches. Physical validation was provided by agreement with experimental data for custom-ruled scratch patterns. Illustrative wear acceleration results are presented for four retrieval femoral heads.  相似文献   

6.
Stress-induced bone loss in the proximo-medial femur has been identified as a factor leading to loosening in the artificial hip joint. In an effort to develop a quantitative understanding of the stress distribution that causes bone loss, axial and hoop stresses in the medial calcar of the femur have been determined after total hip replacement, using finite element stress analysis. Stress distributions for a high and a low Young's modulus prosthesis material are compared for both collared and uncollared prosthesis designs. The use of a low-modulus material, and of a collar, are predicted to be advantageous, giving rise to proximo-medial stress patterns similar to those of the normal, intact femur.  相似文献   

7.
The temporomandibular (TM) joint is one of the most used joints in the human body, and any defect in this joint has a significant influence on quality of life. The objective of this study was to create a parametric numerical finite element (FE) analysis to compare the effect of surgical techniques used for total TM joint replacement implantation on loading the TM joint on the other side. Our hypothesis is that for the optimal function of all total TM joint replacements used in clinical practice it is crucial to devise a minimally invasive surgical technique, whereby there is minimum resection of masticatory muscles. This factor is more important than the design of the usually used total TM joint replacements. The extent of muscle resection influences the mechanical loading of the whole system. In the parametric FE analyses, the magnitude of the TM joint loading was compared for four different ranges of muscle resections during bite, using an anatomical model. The results obtained from all FE analyses support our hypothesis that an increasing extent of the muscle resection increased the magnitude of the TM joint overloading on the opposite side. The magnitude of the TM joint overloading increased depending on the muscle resection to 235% for bite on an incisor and up to 491% for bite on molars. Our study leads to a recommendation that muscle resection be minimised during replacement implantation and to a proposal that the attachment of the condylar part of the TM joint replacement be modified.  相似文献   

8.
The temporomandibular (TM) joint is one of the most used joints in the human body, and any defect in this joint has a significant influence on quality of life. The objective of this study was to create a parametric numerical finite element (FE) analysis to compare the effect of surgical techniques used for total TM joint replacement implantation on loading the TM joint on the other side. Our hypothesis is that for the optimal function of all total TM joint replacements used in clinical practice it is crucial to devise a minimally invasive surgical technique, whereby there is minimum resection of masticatory muscles. This factor is more important than the design of the usually used total TM joint replacements. The extent of muscle resection influences the mechanical loading of the whole system. In the parametric FE analyses, the magnitude of the TM joint loading was compared for four different ranges of muscle resections during bite, using an anatomical model. The results obtained from all FE analyses support our hypothesis that an increasing extent of the muscle resection increased the magnitude of the TM joint overloading on the opposite side. The magnitude of the TM joint overloading increased depending on the muscle resection to 235% for bite on an incisor and up to 491% for bite on molars. Our study leads to a recommendation that muscle resection be minimised during replacement implantation and to a proposal that the attachment of the condylar part of the TM joint replacement be modified.  相似文献   

9.
Pre-clinical experimental wear testing of total knee replacement (TKR) components is an invaluable tool for evaluating new implant designs and materials. However, wear testing can be a lengthy and expensive process, and hence parametric studies evaluating the effects of geometric, loading, or alignment perturbations may at times be cost-prohibitive. The objectives of this study were to develop an adaptive FE method capable of simulating wear of a polyethylene tibial insert and to compare predicted kinematics, weight loss due to wear, and wear depth contours to results from a force-controlled experimental knee simulator. Finite element-based computational wear predictions were performed to 5 million gait cycles using both force- and displacement-controlled inputs. The displacement-controlled inputs, by accurately matching the experimental tibiofemoral motion, provided an evaluation of the simple wear theory. The force-controlled inputs provided an evaluation of the overall numerical method by simultaneously predicting both kinematics and wear. Analysis of the predicted wear convergence behavior indicated that 10 iterations, each representing 500,000 gait cycles, were required to achieve numerical accuracy. Using a wear factor estimated from the literature, the predicted kinematics, polyethylene wear contours, and weight loss were in reasonable agreement with the experimental data, particularly for the stance phase of gait. Although further development of the simplified wear theory is important, the initial predictions are encouraging for future use in design phase implant evaluation. In contrast to the experimental testing which occurred over approximately 2 months, computational wear predictions required only 2h.  相似文献   

10.
The stress distribution within the components and the micromotion of the interface significantly influence the long-term function of the taper lock joint in a modular segmental bone replacement prosthesis. Bending-induced gap opening between the cone and the sleeve can lead to an inflow of biological fluids, and thus accelerate implant corrosion. Local areas of high stress can also accelerate the corrosive processes and initiate local yielding, which may lead to a fracture in one of the components. In this study, a 3-D finite element (FE) model of a modular segmental bone replacement prosthesis was developed to study the interface micromotion and component stress distribution under the maximum loads applied during gait for a taper lock joint with multiple material combinations. Bending was the main cause of the local high stresses and interface separation within the taper joint. For Ti6A14V components, cortical bone bridging and ingrowth across the taper lock gap reduced the peak stress by 45% and reduced the contact interface separation by 55%. Such tissue formation around the taper lock joint could also form a closed capsule to restrict the migration of potential wear particles and thus prevent the biologic process of bone resorption induced by metal debris.  相似文献   

11.
Finite element simulation of early creep and wear in total hip arthroplasty   总被引:4,自引:0,他引:4  
Polyethylene wear particulate has been implicated in osteolytic lesion development and may lead to implant loosening and revision surgery. Wear in total hip arthroplasty is frequently estimated from patient radiographs by measurement of penetration of the femoral head into the polyethylene liner. Penetration, however, is multi-factorial, and includes components of wear and deformation due to creep. From a clinical perspective, it is of great interest to separate these elements to better evaluate true wear rates in vivo. Thus, the aim of this study was to determine polyethylene creep and wear penetration and volumetric wear during simulated gait loading conditions for variables of head size, liner thickness, and head–liner clearance. A finite element model of hip replacement articulation was developed, and creep and wear simulation was performed to 1 million gait cycles. Creep of the liner occurred quickly and increased the predicted contact areas by up to 56%, subsequently reducing contact pressures by up to 41%. Greater creep penetration was found with smaller heads, thicker liners, and larger clearance. The least volumetric wear but the most linear penetration was found with the smallest head size. Although polyethylene thickness increases from 4 to 16 mm produced only slight increases in volumetric wear and modest effects on total penetration, the fraction of creep in total penetration varied with thickness from 10% to over 50%. With thicker liners and smaller heads, creep will comprise a significant fraction of early penetration. These results will aid an understanding of the complex interaction of creep and wear.  相似文献   

12.
Quantification of the wear rate in vitro is now considered an essential step in the development of a new joint replacement prior to clinical trials. However, little research exists around in vitro simulation of wear in the patellofemoral joint (PFJ) despite over 200,000 being implanted annually within the European Union. A method to simulate wear in the laboratory using four input degrees of freedom within the PFJ of total knee replacement (TKR) has been developed. Wear simulation was validated through comparison of functional kinematics and patellar surface damage modes produced in vitro to clinical outcomes. The technique has been shown to replicate the prescribed in vivo kinematics in a reproducible and repeatable manner. The wear scar areas were similar to those found in vivo. However, geometrical measurements of wear were not reliable due to creep and geometry changes. As has been found previously with tibial inserts, geometrical determination of wear volume was not found to be an effective method of comparing wear from simulators and retrievals. Change in volume calculated gravimetrically was seen to be the most repeatable measure of patellar wear in vitro.  相似文献   

13.
Computational models have recently been developed to replicate experimental conditions present in the Stanmore knee wear simulator. These finite element (FE) models, which provide a virtual platform to evaluate total knee replacement (TKR) mechanics, were validated through comparisons with experimental data for a specific implant. As with any experiment, a small amount of variability is inherently present in component alignment, loading, and environmental conditions, but this variability has not been previously incorporated in the computational models. The objectives of the current research were to assess the impact of experimental variability on predicted TKR mechanics by determining the potential envelope of joint kinematics and contact mechanics present during wear simulator loading, and to evaluate the sensitivity of the joint mechanics to the experimental parameters. In this study, 8 component alignment and 4 experimental parameters were represented as distributions and used with probabilistic methods to assess the response of the system, including interaction effects. The probabilistic FE model evaluated two levels of parameter variability (with standard deviations of component alignment parameters up to 0.5mm and 1 degrees ) and predicted a variability of up to 226% (3.44mm) in resulting anterior-posterior (AP) translation, up to 169% (4.30 degrees ) in internal-external (IE) rotation, but less than 10% (1.66MPa) in peak contact pressure. The critical alignment parameters were the tilt of the tibial insert and the IE rotational alignment of the femoral component. The observed variability in kinematics and, to a lesser extent, contact pressure, has the potential to impact wear observed experimentally.  相似文献   

14.
Total ankle replacement remains a less satisfactory solution compared to other joint replacements. The goal of this study was to develop and validate a finite element model of total ankle replacement, for future testing of hypotheses related to clinical issues. To validate the finite element model, an experimental setup was specifically developed and applied on 8 cadaveric tibias. A non-cemented press fit tibial component of a mobile bearing prosthesis was inserted into the tibias. Two extreme anterior and posterior positions of the mobile bearing insert were considered, as well as a centered one. An axial force of 2 kN was applied for each insert position. Strains were measured on the bone surface using digital image correlation. Tibias were CT scanned before implantation, after implantation, and after mechanical tests and removal of the prosthesis. The finite element model replicated the experimental setup. The first CT was used to build the geometry and evaluate the mechanical properties of the tibias. The second CT was used to set the implant position. The third CT was used to assess the bone-implant interface conditions. The coefficient of determination (R-squared) between the measured and predicted strains was 0.91. Predicted bone strains were maximal around the implant keel, especially at the anterior and posterior ends. The finite element model presented here is validated for future tests using more physiological loading conditions.  相似文献   

15.
While total knee replacement is successful, hemiarthroplasty is necessary for some young, obese and active patients who are especially not suitable for unicompartmental or total knee prostheses. Hemiarthroplasty also provides an opportunity for children with bone tumors. The design ofhemiarthroplasty should be patient-specific to reduce contact stress and friction as well as instability, compared to conventional hemi-knee prosthesis. A novel bipolar hemi-knee prosthesis with two flexion stages was developed according to a healthy male's knee morphological profile. The motion mode of the bipolar hemi-knee prosthesis was observed through roentgenoscopy in vitro experiment. The biomechanical properties in one gait cycle were evaluated though finite element simulation. The bipolar hemi-knee prosthesis was found to produce knee flexion at two stages through X-ray images. The first stage is the motion from upright posture to a specified 60~ flexion, followed by the second stage of motion subsequently to deep flexion. The finite element simulation results also show that the designed hemi-knee prosthesis has the ability to reduce stresses on the joint contact surfaces. Therefore, it is possible for the bipolar hemi-knee prosthesis to provide better biotribological performances because it can reduce stresses and potentially wear on the opposing contacting surface during a gait cycle, orovidin~ a t~romisin~ treatment strate~v in future Joint renair znd renlneement  相似文献   

16.
One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered.  相似文献   

17.
Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR.  相似文献   

18.
Fatigue cracking in the cement mantle of total hip replacement has been identified as a possible cause of implant loosening. Retrieval studies and in vitro tests have found porosity in the cement may facilitate fatigue cracking of the mantle. The fatigue process has been simulated computationally using a finite element/continuum damage mechanics (FE/CDM) method and used as a preclinical testing tool, but has not considered the effects of porosity. In this study, experimental tensile and four-point bend fatigue tests were performed. The tensile fatigue S-N data were used to drive the computational simulation (FE/CDM) of fatigue in finite element models of the tensile and four-point bend specimens. Porosity was simulated in the finite element models according to the theory of elasticity and using Monte Carlo methods. The computational fatigue simulations generated variability in the fatigue life at any given stress level, due to each model having a unique porosity distribution. The fracture site also varied between specimens. Experimental validation was achieved for four-point bend loading, but only when porosity was included. This demonstrates that the computational simulation of fatigue, driven by uniaxial S-N data can be used to simulate nonuniaxial loadcases. Further simulations of bone cement fatigue should include porosity to better represent the realities of experimental models.  相似文献   

19.
Polyethylene wear after total hip arthroplasty may occur as a result of normal gait and as a result of subluxation and relocation with impact. Relocation of a subluxed hip may impart a moment to the cup creating sliding as well as compression at the cup liner interface. The purpose of the current study is to quantify, by a validated finite element model, the forces generated in a hip arthroplasty as a result of subluxation relocation and compare them to the forces generated during normal gait. The micromotion between the liner and acetabular shell was quantified by computing the sliding track and the deformation at several points of the interface. A finite element analysis of polyethylene liner stress and liner/cup micromotion in total hip arthroplasty was performed under two dynamic profiles. The first profile was a gait loading profile simulating the force vectors developed in the hip arthroplasty during normal gait. The second profile is generated during subluxation and subsequent relocation of the femoral head. The forces generated by subluxation relocation of a total hip arthroplasty can exceed those forces generated during normal gait. The induced micromotion at the cup polyethylene interface as a result of subluxation can exceed micromotion as a result of the normal gait cycle. This may play a significant role in the generation of backsided wear. Minimizing joint subluxation by restoring balance to the hip joint after arthroplasty should be explored as a strategy to minimize backsided wear.  相似文献   

20.
In total joint arthroplasty, third body particle access to the articulating surfaces results in accelerated wear. Hip joint subluxation is an under-recognized means by which third body particles could potentially enter the otherwise closely conforming articular bearing space. The present study was designed to test the hypothesis that, other factors being equal, even occasional events of femoral head subluxation greatly increase the number of third body particles that enter the bearing space and become embedded in the acetabular liner, as compared to level-walking cycles alone. Ten metal-on-polyethylene hip joint head-liner pairs were tested in a multi-axis joint motion simulator, with CoCrMo third body particles added to the synovial fluid analog. All component pairs were tested for 2h of level walking; half were also subjected to 20 intermittent subluxation events. The number and location of embedded particles on the acetabular liners were then determined. Subluxation dramatically increased the number of third body particles embedded in the acetabular liners, and it considerably increased the amount of scratch damage on the femoral heads. Since both third body particles and subluxation frequently occur in contemporary total hip arthroplasty, their potent synergy needs to be factored prominently into strategies to minimize wear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号